论文部分内容阅读
为了实现林木固碳释氧量的数字化估算,针对现有估算方法的不足,提出了基于BP神经网络的林木固碳释氧量的预测模型。基于对神经网络理论和固碳释氧量估算模型的研究,分析了林木在生长季节的CO2通量变化趋势,采用规范化方法对训练样本预处理,进行BP神经网络训练,并结合弛豫涡旋积累法和箱式法,建立了CO2通量神经网络模型。实验结果表明,所建模型具有较好的泛化性能,能够比较准确地估算出林木的固碳释氧量。