【摘 要】
:
对软件演化信息的度量能发现软件演化过程中的问题,预测其变化趋势。传统的软件演化信息度量技术主要是以文件、目录或者项目作为度量的基本单位,缺乏在较高抽象层次对软件系统进行度量的能力。在基于构件的软件配置管理模型的基础上,以构件作为软件演化度量的基本单位,提出了一组基于属性变化、适用于构件以及软件系统演化度量的公式(包括较近、较早演化度量,演化相似性度量等),并开发了原型支撑系统。
【基金项目】
:
国家自然科学基金资助项目(61262015,61462040), 江西省自然科学基金资助项目(20142BAB207027,20142BAB207011), 江西省科学技术支撑项目(20142BBE50028), 江西省教育厅科学技术项目(GJJ13230)
论文部分内容阅读
对软件演化信息的度量能发现软件演化过程中的问题,预测其变化趋势。传统的软件演化信息度量技术主要是以文件、目录或者项目作为度量的基本单位,缺乏在较高抽象层次对软件系统进行度量的能力。在基于构件的软件配置管理模型的基础上,以构件作为软件演化度量的基本单位,提出了一组基于属性变化、适用于构件以及软件系统演化度量的公式(包括较近、较早演化度量,演化相似性度量等),并开发了原型支撑系统。
其他文献
人工蜂群算法(artificial bee colony algorithm,ABC)是一种简单有效的群智能算法,通过蜜蜂之间的相互合作寻找最优解。禁忌搜索算法(tabu search algorithm,TS)是人工智能与局部邻域搜索算法的结合,具有非常好的全局寻优能力。为了提高ABC的搜索效率和全局寻优能力,结合TS,在ABC中增加一个禁忌表,提出了一种基于禁忌搜索的人工蜂群算法(artifi
针对三维模型简化后的精度与效率难以平衡的问题进行研究,提出一种局部特征熵的半边折叠非均匀网格简化算法。采用两次局部区域聚类探测,首先探测三维数据点所在边聚类局部区域,获取该探测区域法向量;其次以三维数据点邻近点区域的重心约束来探测二次聚类区域法向量。根据信息熵的定义,利用两次探测的法向量间的夹角信息构建局部区域特征熵值作为半边折叠的代价,局部区域特征熵越大表示该区域越趋于平面,应优先简化,否则当保
研究采用任务并行的方法,对Fast Q格式文件的压缩程序DSRC(DNA sequence reads compression)进行了加速。这一任务并行算法将DSRC分为数据读入和数据压缩两个独立的任务,而后将数据压缩的统计过程进一步细分为title行数据统计和其他数据统计两个独立任务。研究结合CPU多线程、GPU、MIC(many integrated core),针对title行数据设计了高并
不确定时态的语义处理及近似运算是时态系统的研究与应用中不可忽视的基本问题。不确定语义的转换、时态粒度的规范化以及不确定时态间的近似运算和语义还原成为不确定时态信息处理中的难点。针对时态跨度中不确定语义造成的时态不确定性与多样性,提出了对不确定语义进行转换的思想,将其转换为区间数的形式,结合时态的粒度属性,给出了不确定时态跨度的形式化描述,使其成为可计算问题;根据时态粒度约束对不确定时态跨度进行了规
单一评分相似性度量及数据稀疏导致了传统推荐算法计算出的用户或项目近邻不准确、推荐质量不高,为此,提出了一种多因素复合度量的协同过滤推荐算法。该算法基于用户访问次数、停留时间及评分定义了一个多因素约束的相似性计算函数,避免了单一评分相似性度量问题,提高了相似性计算的准确度;同时,基于项目类别、目标用户已访问的项目、已访问过待预测评分项目的用户、访问时序建立了项目及用户信任模型,在数据稀疏及冷启动时用
在节点采用RWP移动模型的移动无线传感器网络中,为了提高网络的综合性能,提出了一种新的路由算法LDM。LDM运用节点在RWP模型的运动特点及节点的运动方向与当前位置,推导出节点的传输概率,并使用传输概率来指导路由选择,同时对节点的消息队列进行了有效的管理,提高了网络的综合性能。通过在ONE仿真器上与Epidemic、DT、FAD算法进行比较,结果表明LDM在综合性能上得到了提升。
半自动2D转3D是解决当前3D影视内容匮乏的重要途径。现有方法大多借助局部邻域进行深度插值,忽略了图像的全局约束关系,因而难以准确恢复深度图的对象边界。针对该问题,提出邻域扩展的最优化深度插值方法。首先引入邻域的邻域,建立邻域扩展的最优化深度插值能量模型;其次在相似的像素点与其邻域加权深度平均值的差异近似相等的假设条件下,将深度插值能量模型的最优化问题转换成一个稀疏线性方程组的求解问题。实验结果表
考虑实际生活中商品供应商具有严格的营业时间限制、客户的个性化送货时间预设以及道路路况影响运输成本等因素,建立带多种约束的关联运输调度问题模型。通过聚类算法和节约算法构造初始解,提高求解速度;自适应地改变启发式因子和期望启发式因子,提高算法收敛速度;引入遗传操作算子,自适应改变交叉概率和变异概率,提高算法的全局搜索能力;提取核心路径便于进行后期优化;通过3-opt与车场交换,提高算法的局部搜索能力。
针对水污染运移仿真表现力不强的问题,采用复杂性理论思想,在干流河道多尺度分解的基础上形成水质体积微元,建立具有吸附行为、自净行为、沉降行为、挥发行为、平推行为、扩散行为和演化行为的复杂agent模型,开展基于高性能计算技术的agent计算力优化,实现以多agent涌现为特征的污染物运移仿真模拟,并在数字地球上进行可视化表现。实验表明,该方法能够有效反映污染物的演化状况,并可以汇集3S所提供的地形地