论文部分内容阅读
针对自动引导车(AGV)转向系统的复杂、非线性和时变性,提出了基于RBF神经网络在线辨识的单神经元PID控制来改进常规的PID控制性能。在该控制系统结构中,采用RBF神经网络辨识器实现对转向系统的Jacobian矩阵信息的在线辨识,获得PID参数在线调整信息,并由单神经元PID控制器完成控制器参数的在线自整定,实现系统的智能控制。实验结果表明,与常规的PID控制方法相比,该方法具有较高的控制精度、较强的自适应性和鲁棒性,完全可适用于AGV转向系统的控制。