论文部分内容阅读
针对不良文本的过滤问题,提出一种基于主题分类的文本过滤方法,通过对文本信息进行向量化,引人文本特征抽取技术,筛选出针对文本内容的最优的特征项集合,利用SVM分类技术,来判断文本的态度和立场,达到内容审查过滤的目的.并利用DSP在硬件上加以实现,实验表明该方法同传统的过滤方法相比具有较高的准确率和召回率,且过滤时间大幅减少.