巧用V-t图象解读新课“加速度”

来源 :物理教学探讨 | 被引量 : 0次 | 上传用户:gxy97
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  “物体速度变化快慢的描述一加速度”该节内容在人教版的旧教材中位于第一册第二章第五节。对加速度的分析、求解在旧教材中单刀直人,直接讲解并强调前一节“速度、时间关系”中已有的结论;随后再由各种已有结论来套用图形这样的授课方式中,学生的参与度不高,且推导 全文查看链接
其他文献
[摘 要] 针对近年来数学中考卷中常出现的以能力立意为目标、以增大思维容量为特色的“新定义”创新题,本文作者结合自己的教学经验,分析了此类题的特点,指出解题策略,阐述了解题方法如何渗透日常教学的一些想法.  [关键词] 新定义;解题策略;教学启示  纵观近五年的中考数学卷,常常出现一道以能力立意为目标、以增大思维容量为特色的“新定义”创新题,这种题目集应用性、探索性和开放性于一体,不失为全方面、多
教育是心灵与心灵的对话。随着课程改革的逐渐深入,进行“课堂动态生成教学”已成为教师的共识。教师该如何有效捕捉、筛选、利用这些生成资源?  一、若能激发,切勿遏制  曾经听一位老师执教《求平均数》这节课,下面截取的是其中的一个片段。  小华家去年四个季度用电量情况如下表:  他家去年平均每月用电多少千瓦时?  教师先放手让学生独立去完成。在巡视的过程中,教师发现除了常见的用“四个季度的用电量÷月数=
摘 要:以《光的偏振》的教学设计为例,阐述了以物理学史为线索,如何在高中物理教学内容中渗透物理实验,达到教学目标的过程。  关键词:物理学史;光的偏振;偏振片  中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2014)10(S)-0076-5  【教材内容】  本课使用教材为“鲁科版”《物理》选修(3-4)中第五章第3节。  【教学重点和难点】  (1)重点:理解什么是偏
教育部直属高校门户网站月度排行榜(数据采集日期:2014年5月29日) 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
“解决问题的策略”是苏教版教材新增的一个教学内容,对许多老师来说是一个挑战。老师们常在课后抱怨:这个方法我已经教过了,为什么学生在解题时就是没有这方面的意识呢?笔者认为,体验是生长策略意识的“根”,抓住了体验就抓住了策略教学的“魂”。现结合教学实践谈谈笔者的一些想法与做法。  一、体验策略需要  需要引起动机,动机产生行动。只有当学生有强烈的策略需要时,他们才会高度地关注策略,积极地寻找策略。因此
【摘 要】  本文介绍了开放教育资源TIPS质量保证框架(http://www.open-ed.net/oer-quality/tips.pdf)的验证结果。我们最初向世界各地60多位开放教育资源专家征集标准,共收集到205条,然后又将这些标准提交给几次质量保证国际研讨会的与会者讨论,最终形成了65条被认为是必不可少的标准,即TIPS框架。该框架包含四个层次内容,分别是教学和学习过程(Teachi
[摘 要] 小学数学教材的开发与资源利用是一个非常值得探究的课题,尤其是在教材习题的开发方面,有许多值得探索的路子. 本文从苏教版教材入手,根据习题的二次开发,为新课标理念下的数学课堂探讨提供了新思路.  [关键词] 教材资源;课本习题;二次开发  现行苏教版小学数学教材的科学编排毋庸置疑,给教师提供了非常丰富的教学资源,但在实际教学实践中,教师大多对例题关注较多,而对习题则只是从学生评价检测的角
【摘 要】  MOOCs是当前国际社会普遍关注的热点话题,国内外研究者从经济、管理、教学模式转变及高等教育变革等视角开展了大量研究,但从学习者视角开展的研究还相对匮乏。学习者是学习的主体,对MOOCs的探讨应该更多倾听学习者的声音。学习者是如何参与MOOCs学习的,有怎么样的学习体验,对这些问题的关注与研究是MOOCs设计、开发和实施的重要基础。本研究选择大学生MOOCs参与者为调查对象,对他们的
摘要:高中电学设计性实验多数以测电阻为中心进行展开,如定值电阻阻值的测量、金属丝电阻率的测量、电表电阻的测量等等。设计性实验对学生的能力要求很高,是高中物理的难点。所给的器材若没有一条主线将它们串起来,很难入手。本文根据伏安法测电阻思想这一主线,有序地将问题逐一挖出并逐一解决,最终完成电路的设计。  关键词:设计性实验;伏安法测电阻;器材选择;设计电路
有关二次函数的内容在中考中均以压轴题出现,重点考查二次函数的性质、图象的顶点、对称轴,最值、抛物线的平移、二次函数与方程的关系等知识,通常以解答题、探究题的形式进行考查,同时注重对数形结合、分类讨论等思想方法的考查为了便于同学们学习,现就2009年部分省市中考有关一元二次方程的热点作简要分析,将这类知识的易考题型归纳总结如下。