论文部分内容阅读
利用卷积神经网络(CNN)进行医学图像分割时,通常将分割问题抽象为特征表示和参数优化问题,但在上采样和下采样过程中容易丢失特征信息,导致分割效果不理想。设计包含三级特征表示层和特征聚合模块的深度特征聚合网络结构DFA-Net。通过三级特征表示层提取基础特征同时聚合中间特征和深层特征,从而以聚合深层特征弥补CNN上采样与下采样的特征损失。利用特征聚合模块聚合并激活浅层特征和深层特征,根据两者的互补信息分别做精细化调整。在脑图像和眼底图像公开数据集上的实验结果表明,DFA-Net能够充分利用深层特征与浅