论文部分内容阅读
目的针对基于Haar-like特征的Adaboost人脸检测算法,在应用于视频流时训练的时间较长,以及检测效率较低的问题,提出了一种基于区间阈值的Adaboost人脸检测算法。方法通过运行传统的Adaboost算法对人脸图像Haar-like特征值进行提取分析后,对人脸样本与非人脸样本特征值进行比较,发现在某一特定的特征值区间内,人脸和非人脸区域能够得到准确区分,根据此特性,进行分类器的选择,在简化弱分类器计算步骤的同时,降低训练时间,提高对人脸的识别能力。除此之外,弱分类器的增强通过Adaboos