论文部分内容阅读
在像素级的背景建模方法中,由于其反映的只是时间上的连续性,没有考虑到空间上的相关性,所以会导致检测目标不完整,或检测目标呈碎片化的结果,不利于后续的识别或跟踪.为此,本文首先针对ViBe算法对于动态背景不鲁棒的问题进行了改进,利用样本集的标准差作为动态背景度量值,实时更新距离阈值和背景模型更新率,达到对动态背景的鲁棒性;同时引入了超像素特征,提出了基于超像素特征的运动目标检测算法.由于超像素分割具有较好的边缘信息同时超像素数目可控,所以根据SLIC0超像素分割算法提取超像素特征,将超像素块中的像素均