论文部分内容阅读
提出一种用组合多分类器融合局部信息进行人脸识别的方法。人脸识别过程中图像样本间的相似度可建模为“类内差”和“类间差”两种模式类,用这种思想在图像小波分解域的局部区域上构造弱分类器集,然后通过Boosting训练生成强分类器,最终的人脸匹配由多个弱分类器输出的加权和给出决策。实验结果表明,系统具有较高的识别率,对表情和光照变化具有很好的鲁棒性,而且对新个体有较好的扩展能力。