论文部分内容阅读
传统的基于Haar特征的AdaBoost人脸检测算法,由于Haar特征数量过多,导致训练时间过久,而且不能快速检测出人脸。针对这一问题,本文提出一种基于多块局部二值模式(Multi-block Local Binary Pattern,MB_LBP)特征的AdaBoost人脸检测算法,这种MB_LBP特征结合了旋转不变局部二值模式(Local Binary Patterns,LBP)描述符,表达能力更强,特征数量更少.仿真结果表明,在训练时间大幅缩减的同时,使用MB_LBP特征时可以达到Haar特征