【摘 要】
:
针对极低信噪比(LSNR)情况下暗弱运动目标和背景噪声的强度难以区分的问题,提出了一种基于检测与跟踪相互迭代的极暗弱目标搜索算法,总体上采用将时域检测与空域跟踪的过程联合、迭代进行的新型策略。首先,在检测过程中计算检测窗口内信号片段与已经提取的背景估计特征的差别;然后,在跟踪过程中运用动态规划算法保留使得轨迹能量累积最大的轨迹;最后,自适应地调整下一检测过程中被保留轨迹的检测器阈值参数,使该轨迹内
【机 构】
:
中国科学院微小卫星创新研究院,上海科技大学信息科学与技术学院,中国科学院大学
【基金项目】
:
中国科学院国防科技创新重点部署项目(KGFZD-135-20-03)。
论文部分内容阅读
针对极低信噪比(LSNR)情况下暗弱运动目标和背景噪声的强度难以区分的问题,提出了一种基于检测与跟踪相互迭代的极暗弱目标搜索算法,总体上采用将时域检测与空域跟踪的过程联合、迭代进行的新型策略。首先,在检测过程中计算检测窗口内信号片段与已经提取的背景估计特征的差别;然后,在跟踪过程中运用动态规划算法保留使得轨迹能量累积最大的轨迹;最后,自适应地调整下一检测过程中被保留轨迹的检测器阈值参数,使该轨迹内的像素能以更宽容的策略被保留到下一检测跟踪阶段。实验测试结果表明,所提算法可以在1%~2%的虚警率和约7
其他文献
针对目前知识图谱(KG)中存在大量关系的缺失,以及在进行关系推理时没有充分考虑两实体间多跳路径中隐含信息的问题,提出了一种融合多跳关系路径信息的关系推理方法。首先,对于给定的候选关系和两个实体,利用卷积运算将连接两个实体的多跳关系路径编码到低维空间里并提取信息;其次,利用双向长短时记忆(BiLSTM)网络建模以生成关系路径表示向量,并利用注意力机制将其与候选关系表示向量进行组合;最后,采用多步推理
随着医学上对随访工作的不断重视,通过医学图像分析的方法获取随访指导的相关信息变得越来越重要;然而,在深度学习领域,大多数方法不适用于处理此类任务。为了解决这个问题,提出了一种多时期知识蒸馏(MKD)模型。首先,借助知识蒸馏在模型迁移方向上的优势,将带有长时期随访信息的分类任务转换为基于领域知识的模型迁移任务;然后,充分利用长时期医学图像中所包含的随访知识,来完成长时期的肺结节分类。同时,针对随访过
针对单一机制的灰狼优化算法(GWO)易陷于局部最优、收敛速度慢的问题,提出了一种改进灰狼优化(IGWO)算法来解决实际铁路物流配送中心选址的问题。首先,在基本的灰狼优化算法的基础上,引入佳点集理论初始化种群,从而提高了初始种群的多样性;然后,利用差值剔除策略(DES)来增加全局寻优能力,以达到一种高效的寻优模式。仿真实验结果表明:与标准的灰狼算法相比,所提出的IGWO适应度值提高了3%,在10个测
传统决策树算法应用于有序分类任务时存在两个问题:传统决策树算法没有引入序关系,因此无法学习和抽取数据集中的序结构;现实生活中存在大量模糊而非精确的知识,而传统的决策树算法无法处理存在模糊属性取值的数据。针对上述问题,提出了基于模糊优势互补互信息的有序决策树算法。首先,使用优势集表示数据中的序关系,并引入模糊集来计算优势集以形成模糊优势集。模糊优势集不仅能反映数据中的序信息,而且能自动获取不精确知识
在使用无人机(UAV)作为计算卸载的数据收集器对用户设备(UE)提供移动边缘计算(MEC)服务的场景下,设计了一种通过UAV实现高效的UE覆盖的无线通信策略。首先,在给定UE分布的条件下,对于UAV的飞行轨迹和通信策略,使用了连续凸逼近(SCA)的优化方法来得出一种可以使全局能量最小化的近似最优解;此外,对于UE大范围分布或任务量较大的场景,提出了一种自适应聚类算法,以将地面的UE划分成尽量少的聚
针对大规模长序列无人机(UAV)影像定位中存在的速度慢、误差漂移等问题,结合UAV影像的特点,提出了一种基于场景图划分的UAV影像定位算法。首先,利用全球定位系统(GPS)辅助信息缩小特征匹配的空间搜索范围,从而加速同名点的提取;之后结合视觉一致性和空间一致性来构建场景图,并利用归一化割(Ncut)对其进行划分;接着,对各组场景图进行增量重建;最后,利用光束法平差(BA)融合场景图从而计算出场景的
基于深度学习的图像伪造方法生成的图像肉眼难辨,一旦该技术被滥用于制作虚假图像和视频,可能会对国家政治、经济、文化造成严重的负面影响,也可能会对社会生活和个人隐私构成威胁。针对上述问题,提出了一种基于自动编码器的深度伪造Deepfake图像检测方法。首先,借助高斯滤波对图像进行预处理,提取高频信息作为模型输入;然后,利用自动编码器对图像进行特征提取,并在编码器中添加注意力机制模块以获取更好的分类效果
针对拥有双向航道的集装箱港口中船舶进出港所遇到的会遇和追越等问题,提出了一种重点考虑服务规则的新型船舶调度优化算法。首先,同时考虑双向航道的现实约束和港口夜航的安全规定;然后,构建了以所有船舶在港总等待时间最小为目标的混合整数规划模型来得出最佳的船舶进出港次序;最后,设计了嵌入聚合策略的分支切割算法对模型进行求解。通过数值实验可知,运用嵌入聚合策略的分支切割算法所得结果与下界值的平均相对偏差为2.
以实现供货商联盟期望物流成本最小化为目标,针对需求随机波动下的多供货商多产品库存路径问题(IRP)进行了研究。基于横向整合战略,设计了供货商联盟成员间车辆配送成本的合理分摊方式。考虑零售商配送软硬时间窗和库存服务水平要求,构建了多供货商多产品的异质车辆库存路径混合整数随机规划模型,并利用需求累积分布逆函数将其转化为确定型规划模型。然后设计改进遗传算法求解该确定型规划模型。算例分析结果显示,使用异质
针对行人重识别任务在特征提取时缺乏对行人特征尺度变化的考虑,导致其易受环境影响而具有低行人重识别准确率的问题,提出了一种基于多尺度特征融合的行人重识别方法。首先,在网络浅层通过混合池化操作来提取多尺度的行人特征,从而帮助网络提升特征提取能力;然后,在残差块内添加条形池化操作以分别提取水平和竖直方向的远程上下文信息,从而避免无关区域的干扰;最后,在残差网络之后利用不同尺度的空洞卷积进一步保留多尺度的