论文部分内容阅读
以α稳定分布作为噪声模型,研究了非高斯噪声对传统的二阶循环统计量的影响,提出了分数低阶循环相关的概念,研究并证明了其性质,对传统意义上的二阶循环统计量进行了广义化,并在此基础上结合自适应技术提出了一种基于分数低阶循环相关的自适应时延估计方法。计算机模拟表明,该方法可有效估计高斯噪声和脉冲噪声条件下的时变和非时变时延值,其性能不仅优于基于二阶循环相关的自适应时延估计算法,而且优于最小平均P范数(LMP)自适应时延估计方法。