论文部分内容阅读
针对在连续优化中,蚁群算法(ACO)存在的收敛速度慢和易陷入局部最优的问题,提出了一种新的含维变异算子的连续域蚁群算法(DMCACO)。该算法采用动态随机抽取的方法来确定目标个体,引导蚁群进行全局的快速搜索,同时在当前最优蚂蚁邻域内进行小步长的局部搜索。在定义了维多样性概念的基础上,引入维变异算子对维多样性最差的维进行变异:让所有蚂蚁在该维上的位置重新均匀分布在可行区域上。对测试函数所做的仿真实验表明,该算法具有优良的全局寻优能力和快速的收敛能力。