论文部分内容阅读
针对当今网络故障诊断所存在的弊端,当发生故障时难以满足快而准的要求,误诊、漏诊率颇高,诊断数据量大,属性选取具有主观性,学习、泛化能力欠缺,故此结合粗糙集(RS)及克隆选择算法(CSA)提出一种智能化诊断方法(RS-CSA)。首先利用RS对故障样本进行预处理,求出其约简后最小规则集及客观属性权重,然后用改进的CSA构造诊断器并对待诊断样本予以诊断、学习。经实验验证其所提出的算法优于传统诊断技术,有一定的理论及实用价值。