论文部分内容阅读
把期望最大化(EM)算法应用到含噪ICA模型中,即假定源信号具有统计独立性,并将其放在贝叶斯估计框架中,提出一种解决含噪独立分量分析(ICA)的期望最大化(EM)算法。在含噪ICA模型中,假设源信号的均值和方差服从更为一般的均匀分布,提出的EM算法将混合矩阵和超参数交替进行处理,可以有效地估计混合矩阵和超参数在一定模型下的模型参数,从而能够估计出源信号。仿真结果说明,该方法能够很好地解决含有噪声ICA模型下的盲源分离问题.