论文部分内容阅读
本文针对多输入多输出Hammerstein模型提出了一种基于混合神经网络的模型预测控制策略,控制器采用线性优化机构和高斯径向基神经网络串联.该策略不需要假设Hammerstein模型的非线性部分由多项式构成,避免了已有研究在无根或重根情况下存在导致预测控制的优化特征丧失问题,而采用混合神经网络则避免了采用传统神经网络拟合动态映射时存在的网络规模大和实时性差的不足.