论文部分内容阅读
长期以来,由于受应试教育的影响,不少教师重解题、轻概念,造成数学概念与解题脱节的现象。造成学生对概念含糊不清,一知半解,不能很好地理解和运用概念,严重影响了学生的解题质量。那么,应如何搞好新课标下的高中数学概念课教学呢?我结合自己多年的教学实践,谈谈一些粗浅的看法。
一、在体验数学概念产生的过程中认识概念
高中数学课程标准指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉,在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
数学概念的引入,应从实际出发,创设情景,提出问题。通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。
二、在挖掘新概念的内涵与外延的基础上理解概念
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:(1)用直角三角形边长的比刻画的锐角三角函数的定义;(2)用点的坐标表示的锐角三角函数的定义;(3)任意角的三角函数的定义。由此概念衍生出:(1)三角函数的值在各个象限的符号;(2)三角函数线;(3)同角三角函数的基本关系式;(4)三角函数的图像与性质;(5)三角函数的诱导公式等。可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键作用。"磨刀不误砍柴工",重视概念教学,挖掘概念的内涵与外延,有利于学生理解概念。
三、在寻找新旧概念之间联系的基础上掌握概念
数学中有许多概念都有着密切的联系,如平行线段与平行向量,平面角与空间角,方程与不等式,映射与函数等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。从历史上看,初中给出的定义来源于物理公式,而函数是描述变量之间的依赖关系的重要数学模型,函数可用图像、表格、公式等表示,所以高中用集合与对应的语言来刻画函数,抓住了函数的本质属性,更具有一般性。认真分析两种函数定义,其定义域与值域的含义完全相同,对应关系本质也一样,只不过叙述的出发点不同,所以两种函数的定义本质是一致的。当然,对于函数概念真正的认识和理解是不容易的,要经历一个多次接触的较长的过程。
四、在运用数学概念解决问题的过程中巩固概念
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的"原型",引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成。例如,当我们学习完"向量的坐标"这一概念之后,进行向量的坐标运算,提出问题:已知平行四边形的三个顶点的坐标,试求第四个顶点的坐标。学生展开充分的讨论,不少学生运用平面解析几何中学过的知识,结合平行四边形的性质,提出了各种不同的解法,有的学生应用共线向量的概念给出了解法,还有一些学生运用所学过向量坐标的概念,把点的坐标和向量的坐标联系起来,巧妙地解答了这一问题。学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇心以及探索和创造的欲望,使学生在参于的过程中产生内心的体验和创造。除此之外,教师通过反例、错解等进行辩析,也有利于学生巩固概念。
高中数学新课标提出了与时俱进地认识"双基"的基本理念,概念教学是"双基"教学的重要组成部分,所以,通过数学概念教学,使学生认识概念、理解概念、巩固概念,是数学概念教学的根本目的。通过概念课教学,力求使学生明确:(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。目前,课时不足是数学新课程教学的突出問题,这会使概念教学受到严重打击。我认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好的帮助学生落实"双基",更好的帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。
总之,在概念教学中,要根据课标对概念教学的具体要求,创造性的使用教材。优化概念教学设计,把握概念教学过程,真正使学生在参与的过程中产生内心的体验和创造。
一、在体验数学概念产生的过程中认识概念
高中数学课程标准指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉,在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
数学概念的引入,应从实际出发,创设情景,提出问题。通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。
二、在挖掘新概念的内涵与外延的基础上理解概念
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:(1)用直角三角形边长的比刻画的锐角三角函数的定义;(2)用点的坐标表示的锐角三角函数的定义;(3)任意角的三角函数的定义。由此概念衍生出:(1)三角函数的值在各个象限的符号;(2)三角函数线;(3)同角三角函数的基本关系式;(4)三角函数的图像与性质;(5)三角函数的诱导公式等。可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键作用。"磨刀不误砍柴工",重视概念教学,挖掘概念的内涵与外延,有利于学生理解概念。
三、在寻找新旧概念之间联系的基础上掌握概念
数学中有许多概念都有着密切的联系,如平行线段与平行向量,平面角与空间角,方程与不等式,映射与函数等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。从历史上看,初中给出的定义来源于物理公式,而函数是描述变量之间的依赖关系的重要数学模型,函数可用图像、表格、公式等表示,所以高中用集合与对应的语言来刻画函数,抓住了函数的本质属性,更具有一般性。认真分析两种函数定义,其定义域与值域的含义完全相同,对应关系本质也一样,只不过叙述的出发点不同,所以两种函数的定义本质是一致的。当然,对于函数概念真正的认识和理解是不容易的,要经历一个多次接触的较长的过程。
四、在运用数学概念解决问题的过程中巩固概念
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的"原型",引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固,以及解题能力的形成。例如,当我们学习完"向量的坐标"这一概念之后,进行向量的坐标运算,提出问题:已知平行四边形的三个顶点的坐标,试求第四个顶点的坐标。学生展开充分的讨论,不少学生运用平面解析几何中学过的知识,结合平行四边形的性质,提出了各种不同的解法,有的学生应用共线向量的概念给出了解法,还有一些学生运用所学过向量坐标的概念,把点的坐标和向量的坐标联系起来,巧妙地解答了这一问题。学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇心以及探索和创造的欲望,使学生在参于的过程中产生内心的体验和创造。除此之外,教师通过反例、错解等进行辩析,也有利于学生巩固概念。
高中数学新课标提出了与时俱进地认识"双基"的基本理念,概念教学是"双基"教学的重要组成部分,所以,通过数学概念教学,使学生认识概念、理解概念、巩固概念,是数学概念教学的根本目的。通过概念课教学,力求使学生明确:(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。目前,课时不足是数学新课程教学的突出問题,这会使概念教学受到严重打击。我认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好的帮助学生落实"双基",更好的帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。
总之,在概念教学中,要根据课标对概念教学的具体要求,创造性的使用教材。优化概念教学设计,把握概念教学过程,真正使学生在参与的过程中产生内心的体验和创造。