隐式Runge-Kutta方法求解多延迟微分方程的GPLm-稳定性

来源 :上海师范大学学报:自然科学版 | 被引量 : 0次 | 上传用户:ejian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究了用IRK方法求解多延时微分方程数值解的稳定性,对于线性模型方程,分析并证明了IRK方法是GPLm-稳定的当且仅当它是L稳定的.
其他文献
主要研究了两步Runge—Kutta方法求解非线性延迟方程的稳定性.基于(k,l)-代数稳定的两步Runge—Kutta方法,分析了非线性延迟方程的GR(l)-稳定,GAR(l)-稳定和弱GAR(l)-稳定,并在最后的两个
在Hilbert空间中,利用Fan—KKM定理,证明了广义平衡问题的辅助问题的解的存在性和唯一性.研究了用于寻找广义平衡问题的的解集和一列非扩张映象的不动点集之公共元的迭代序列,在
将一条线段分成两部分,使其中一部分与全长的比等于另一部分与这部分的比,这个比值为(√5-1)/2=0.618,称其为黄金比.这种线段的分割称为黄金分割.黄金比是一个迷人而美丽的数
近年来,数学教育界对数学素质教育的研究非常活跃,硕果累累,素质教育的实施,开创了数学教学改革的新局面.但就数学素质教育的总体而言,无论在理论上还是在实践上还存在许多问题需探
以丙烯酸(AA)、苯乙烯磺酸钠(SSS)和丙烯酸羟丙酯(CP)为单体,经聚合反应得到AA-SSS-CP三元共聚物分散剂,研究其对TiO2的分散效果,并用扫描电镜(SEM)、激光粒度分析仪对分散后颗粒的表
证明了由具有白噪音的Klein-Gordon-Schrdinger方程的随机格点系统生成的随机动力系统存在随机吸引子,该随机吸引子吸引所有的缓增随机集.
Abstract: We study the onedimensional quantum hydrodynamic system for semiconductors.It takes the isentropic EulerPoisson equations with the quantum potential and momentum relaxation term in the momen