论文部分内容阅读
1.基础理论在图1的光学系统中,空间滤波器形成在聚焦透镜的像面上。也就是说,它由硅光二极管排列图形的直角坐标或者极坐标f(x,y)或f(γ,θ)表示。利用透镜把物面输入状况的亮度空间分布i(x,y)或i(γ,θ)图像反映在空间滤波器面上。透镜的分散函数用物面上的点光源在像面上的模糊圆(半径ρ)表示。如果把这个函数写作l(x,y:ρ)或者l(γ,θ:ρ),那么,在用直角坐标或极坐标表示的空间频率范围内,这时形成空间滤波器的探测器的输出e(ρ)可表示为:
1. Basic Theory In the optical system of FIG. 1, a spatial filter is formed on the image plane of the focus lens. That is, it is represented by the Cartesian coordinates or the polar coordinates f (x, y) or f (γ, θ) of the silicon photodiode array pattern. Using the lens, the brightness spatial distribution i (x, y) or i (γ, θ) of the object surface input condition is reflected on the spatial filter surface. The dispersion function of the lens is expressed by the fuzzy circle (radius ρ) on the image plane of the point light source on the object plane. If we write this function as l (x, y: ρ) or l (γ, θ: ρ) then the output of the detector that now forms the spatial filter, in the spatial frequency range expressed in Cartesian or polar coordinates e (ρ) can be expressed as: