论文部分内容阅读
所谓的数学课堂导入是指在讲解新知或数学教学活动开始之时,教师有意识、有目的的引导学生进行数学学习的一种方式,是课堂教学的启始环节,也是课堂教学中一个极其重要的环节。一个巧妙而又正确的导入,可以吸引学生的注意力,引起浓厚的学习兴趣,激发求知的欲望和学习动机,同时还能起到联结知识,沟通师生情感的作用。但用什么样的导入方式起始,却是应当认真推敲的。绝不能采用某种固定的模式,也不能机械照搬套用。现结合自己初中数学教学工作的实践,对几种有效的导入方法谈谈粗浅的认识。
一、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即“圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
二、类比导入法
在讲相似三角形性质时,可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法使学生能从类推中促进知识的迁移,发现新知识。
三、实践导入法
亲手实践导入法是组织学生进行实践操作,通过学生自己动手动脑去探索知识,发现真理。例如在讲三角形内角和为180°时,让学生将三角形的三个内角剪下拼在一起。从而从实践中总结出三角形内角和为180°,使学生享受到发现真理的快乐。
四、反馈导入法
根据信息论的反馈原理,一上课就给学生提出一些问题,由学生的反馈效果给予肯定或纠正后导入新课。如在上直角三角形习题课时,课前可以先拟一个有代表性的习题让学生讨论。
五、设疑导入法
设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:有一个同学想依照亲戚家的三角形玻璃板割一块三角形,他能不能把玻璃带回家就割出同样的一块三角形呢?同学们议论纷纷。然后,我向同学们说,要解决这个问题要用到三角形的判定。现在我们就解决这个问题——全等三角形的判定。
六、演示导入法
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
七、直接导入法
它是一上课就把要解决的问题提出来的一种方法。如在讲切割定理时,先将定理的内容写在黑板上,让学生分清已知求证后,师生共同证明。
八、强调导入法
根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基矗今天,我们就学习,第七章圆。
九、媒体导入法
从现代化媒体的运用来创设导入的方式。引导学生想象上课内容的生活背景也是一种很好的课的导入方法。在上 “直线与圆的位置关系” 一节课时,我以“同學们看过海上日出吗?”引入新课,利用多媒体课件放映日出的全过程并把太阳抽象成一个圆,海平面抽象成一条直线,进而让学生讨论圆与直线有几种位置关系?再用几何画版放映出圆与直线的位置关系的变化过程,最后归纳出圆与直线的相切、相交、相离的三种相对位置关系。该节课运用这种“生活化”的媒体引入法取得了很好的效果。通过这样的导入,学生想探究的欲望一下就调动起来了,而且又体会到了数学乐趣,数学的美。
当然,导入新课时所选用的内容必须紧扣课题,不能脱离正课主题,更不能与正课有矛盾或冲突。否则不但没有起到帮助理解新知识的作用,反而干扰了学生对新授课的理解,给学生的认识过程造成了障碍。有效的课堂导入,有一些基本的原则,根据这些原则,设计出的导入方式才更有效。第一,课堂导入要有针对性。导入的创设应以学生感兴趣的事,生活中经历过的事,这样他样会觉得特别亲切;还应以学科特点相结合,要与生活相结合,要体现出数学化。第二,课堂导入要有思考性。要能引起学生的思考,提高学习活动的思维含量,导入的过程也应是一个积极思考的过程。第三,导入要有趣味性。要让学生获得感受到知识的乐趣,创造的乐趣,审美的乐趣。
一、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即“圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
二、类比导入法
在讲相似三角形性质时,可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法使学生能从类推中促进知识的迁移,发现新知识。
三、实践导入法
亲手实践导入法是组织学生进行实践操作,通过学生自己动手动脑去探索知识,发现真理。例如在讲三角形内角和为180°时,让学生将三角形的三个内角剪下拼在一起。从而从实践中总结出三角形内角和为180°,使学生享受到发现真理的快乐。
四、反馈导入法
根据信息论的反馈原理,一上课就给学生提出一些问题,由学生的反馈效果给予肯定或纠正后导入新课。如在上直角三角形习题课时,课前可以先拟一个有代表性的习题让学生讨论。
五、设疑导入法
设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:有一个同学想依照亲戚家的三角形玻璃板割一块三角形,他能不能把玻璃带回家就割出同样的一块三角形呢?同学们议论纷纷。然后,我向同学们说,要解决这个问题要用到三角形的判定。现在我们就解决这个问题——全等三角形的判定。
六、演示导入法
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
七、直接导入法
它是一上课就把要解决的问题提出来的一种方法。如在讲切割定理时,先将定理的内容写在黑板上,让学生分清已知求证后,师生共同证明。
八、强调导入法
根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基矗今天,我们就学习,第七章圆。
九、媒体导入法
从现代化媒体的运用来创设导入的方式。引导学生想象上课内容的生活背景也是一种很好的课的导入方法。在上 “直线与圆的位置关系” 一节课时,我以“同學们看过海上日出吗?”引入新课,利用多媒体课件放映日出的全过程并把太阳抽象成一个圆,海平面抽象成一条直线,进而让学生讨论圆与直线有几种位置关系?再用几何画版放映出圆与直线的位置关系的变化过程,最后归纳出圆与直线的相切、相交、相离的三种相对位置关系。该节课运用这种“生活化”的媒体引入法取得了很好的效果。通过这样的导入,学生想探究的欲望一下就调动起来了,而且又体会到了数学乐趣,数学的美。
当然,导入新课时所选用的内容必须紧扣课题,不能脱离正课主题,更不能与正课有矛盾或冲突。否则不但没有起到帮助理解新知识的作用,反而干扰了学生对新授课的理解,给学生的认识过程造成了障碍。有效的课堂导入,有一些基本的原则,根据这些原则,设计出的导入方式才更有效。第一,课堂导入要有针对性。导入的创设应以学生感兴趣的事,生活中经历过的事,这样他样会觉得特别亲切;还应以学科特点相结合,要与生活相结合,要体现出数学化。第二,课堂导入要有思考性。要能引起学生的思考,提高学习活动的思维含量,导入的过程也应是一个积极思考的过程。第三,导入要有趣味性。要让学生获得感受到知识的乐趣,创造的乐趣,审美的乐趣。