论文部分内容阅读
本文研究离子聚合物材料的玻璃化温度与离子力的关系。在玻璃化温度T_g时体系须具有足够能量使链际正负离子脱离配位场的影响,该能量系与离子力成正比,离子力又与电负性ε成正比而与离子半径R成之比,因此提出T_g∝ε/R从而得出计算聚磷酸盐类T_g的线性方程: T_g=145(ε/R)-8对于聚丙烯酸盐类及其共聚物,则得T_g=134(ε/R)-8 按照Mulliken的概念,电负性ε相当于电离势E,由此可得计算上述两类聚合物的对应方程: T_g=34(E/R)-5 T_g=32(E/R)-5E和ε均随离子价态而变。如果只取正离子的电离势E_C和电负性ε_C之比,R仍为正负离子半径之和,则得T_g=111(E_C/ε_CR) (聚磷酸盐类)和T_g=102(E_C/ε_CR) (聚丙烯酸盐及其共聚物)
This paper studies the relationship between the glass transition temperature and the ionic force of ionic polymer materials. At the glass transition temperature T_g, the system must have enough energy to make the chain anions and anions dissociate from the coordination field. The energy system is proportional to the ionic force, which in turn is proportional to the electronegativity ε and to the ionic radius R , Therefore T_gαε / R is proposed to give a linear equation for the calculation of polyphosphate T_g: T_g = 145 (ε / R) -8 For polyacrylates and their copolymers, T_g = 134 (ε / R ) -8 According to the concept of Mulliken, the electronegativity ε is equivalent to the ionization potential E, so that the corresponding equation for the above two types of polymers can be calculated: T_g = 34 (E / R) -5 T_g = 32 (E / R) Both -5E and ε vary with the valency of ions. If we only take the positive ion ionization potential E_C and electronegativity ε_C ratio, R is still the sum of positive and negative ion radius, you have T_g = 111 (E_C / ε_CR) (polyphosphate) and T_g = 102 (E_C / ε_CR ) (Polyacrylate and Copolymer)