论文部分内容阅读
针对多目标优化得到一个最优解集和解之间难以比较的问题,对单目标优化中的自适应策略进行了改进,提出一种面向多目标优化问题的自适应差分进化算法,在已有方法自适应改变交叉率的基础上,设定缩放因子有三种不同的分布模型,通过统计一定代数内个体的优劣来自适应选择合适的模型并生成相应取值,从而控制了搜索长度,防止新个体陷入在最优解集的部分区域。该算法还提出利用第三方解集和优胜累积量的概念来处理最优解之间的比较问题。通过5个标准优化问题的测试结果以及与其他几种算法的对比研究表明,所提出的改进算法性能更好,其在IGD