论文部分内容阅读
信息融合数据源的聚类分析对于信息融合过程的算法管理具有重要意义。本文首先提出一种多粒度模糊聚类方法对采集的数据源样本进行聚类分析,得到样本的聚类树。在此基础上,提出一种基于熵增益率的多粒度连续属性离散化算法,将数据源属性离散化。最终得到聚类结果的特征描述,为今后的规则提取做好准备。实验表明:基于多粒度的数据源分析方法是有效的。