论文部分内容阅读
针对词袋图像表示模型的语义区分性和描述能力有限的问题,以及由于传统的基于词袋模型的分类方法性能容易受到图像中背景、遮挡等因素影响的问题,本文提出了一种用于图像分类的多视觉短语学习方法.通过构建具有语义区分性和空间相关性的视觉短语取代视觉单词,以改善图像的词袋模型表示的准确性.在此基础上,结合多示例学习思想,提出一种多视觉短语学习方法,使最终的分类模型能反映图像类别的区域特性.在一些标准测试集合如Caltech-101[1]和Scene-15[2]上的实验结果验证了本文所提方法的有效性,分类性能分别相