关于m-增生算子的Ishikawa迭代程序的收敛性与稳定性

来源 :应用数学 | 被引量 : 0次 | 上传用户:lan737898
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在任意的Banach空间的条件下,具误差的Ishikawa迭代程序强收敛到非线性方程X+Tx=f的唯一解并且是几乎稳定的.其结果推广、改进和统一了Zeng和Liu的相关结果.
其他文献
研究营养基被污染且脉冲扰动的时滞Chemostat模型.利用离散动力系统频闪映射,得到了微生物种群灭绝周期解,且它是全局吸引的;利用时滞脉冲微分方程理论,得到了系统持久的条件
设f1和f2是二阶微分方程f′′+A(z)f=0的两个线性无关的解,其中A(z)是无穷级整函数且超级σ2(A)〈∞.令E=f1f2.文章研究了E的超级为无穷的Borel方向和零点聚值线之间的关系.所得结果
本文考虑了具有齐次边界条件的对称正则长波方程的有限差分格式,提出了一个三层守恒的有限差分格式,证明了格式的收敛性和稳定性,从理论上得到了收敛阶为O(h^2+τ^2).通过数值试验表
本文讨论非线性抛物积分微分方程的各向异性有限元方法.在不引入真解的H1-Volterra投影的情况下得到了半离散格式下的整体超收敛.
证明了反射型的带跳倒向双重随机微分方程的解的存在唯一性.主要方法是Snell包和不动点定理.
本文考虑无穷维自回归过程经验协方差函数的中偏差原理,仅对自回归过程的随机扰动项做了高斯可积性的假设,这个条件比[4]中的对数Sobolev不等式要弱很多.主要利用了m-相依随机变
已往考虑顾客满意的结果绝大数都是考虑顾客满意对顾客忠诚的影响.这里我们将顾客满意结果的应用进行拓展,借助随机前沿面模型来构建顾客满意对企业利润的影响模型,进一步探讨顾
本文讨论了一类变系数的竞争扩散方程组,其中系数关于空间和时间变元连续,而关于时间变元是周期的.通过构造上下解,运用单调迭代方法证明了带Neumann边界条件的竞争扩散方程
本文将从实际评估工作中提练出来的一种评估模型推广至因变量未知且带有一般性凸约束条件的广义线性模型,证明了模型解的存在唯一性,并从解的几何背景出发,提出了基于凸集间
考虑带有齐次Dirichlet边界条件,具非局部源项的半线性抛物型方程组正解的爆破性质,首先给出了该问题的解在有限时刻爆破的充分条件,以及解的两个分量同时爆破的必要条件,并建立