论文部分内容阅读
随着分辨率的提高,遥感图像空间包含的有用信息越来越丰富,这使得遥感数据的处理变得更加复杂,容易发生维数灾难并影响识别效果。针对这一情况,提出一种自适应加权特征字典与联合稀疏相结合的遥感图像目标检测方法(GJ-SRC)。首先将训练图像和待测图像进行Gabor变换以提取特征图像。然后计算各个特征值在进行稀疏表示时的贡献权重,通过自适应方法构造特征字典,使字典具有更强的判别能力。最后,提取每一类图像的公共特征和单个图像的私有特征构成联合字典,并利用测试图像稀疏表示进行目标检测识别。为了避免Gabor变换产