基于信息矩阵估计的极化码参数盲识别算法

来源 :系统工程与电子技术 | 被引量 : 0次 | 上传用户:feiying7405
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前极化码码长识别存在抗噪声性能差的问题,提出了基于信息矩阵估计的极化码参数盲识别算法.本文算法利用极化码生成矩阵的逆矩阵,与码字比特流构造的码字矩阵相乘得到估计的信息矩阵,在无误码情况下根据分析矩阵所含的信息得到码率,并利用其分布情况来识别码长、信息比特位数和位置分布.在有误码的情况下,引入了零均值比计量,根据峰值识别出码长.最后,利用分析矩阵和设定判决门限,识别出信息比特位数和位置分布.仿真结果表明,本文算法对码长的识别性能有所提高,对于参数为(64,30)的极化码,在误码率高达1.06×10-1时,码长的识别率依然能达到80%.
其他文献
针对无人机(unmanned aerial vehicle,UAV)离线航迹规划对算法全局搜索能力和鲁棒性的要求,设计一种自适应郊狼算法,从最优化问题角度研究UAV离线航迹规划.建立UAV离线航迹规划的数学模型;在标准郊狼优化算法的基础上设计4种操作算子和一种自适应学习机制,使算法在搜索的过程中,智能选择合适的操作算子,并设计莱维飞行策略提高算法的全局寻优能力;最后对自适应郊狼算法进行函数测试和离线航迹规划仿真.函数测试表明自适应郊狼算法具有较强的全局搜索能力,离线航迹规划仿真表明自适应郊狼优化算法能适应
针对高速机动目标拦截,提出了一种末制导阶段预设性能制导律.首先,建立三维非线性拦截模型,在俯仰和偏航两个平面中,将期望视线角和视线角速率选做状态量设计滑模动态面,在动态面控制的基础上,将滑动模态误差利用误差转换函数转化为预设性能误差方程,设计制导律,驱动滑模变量按预设性能收敛.该制导律能使制导顺利进行,满足终端视线角约束.然后,考虑视线角速率测量误差以及目标信息不确定性,建立有限时间干扰观测器,保证了制导指令的执行.
针对头脑风暴优化(brain storm optimization,BSO)算法的选择操作中仅部分个体更新追随全局最优和变异操作中步长不能自适应的问题,采用追随全局最优策略以充分利用全局最优信息,并用差分变异代替原来的高斯变异以自适应调节变异步长,提出了基于全局最优和差分变异的BSO (global-best difference-mutation brain storm optimization,GDBSO)算法.通过6个标准测试函数极值寻优的Matlab仿真对比研究表明GDBSO具有优良性能,较好地解
针对高速移动场景正交频分复用(orthogonal frequency division multiplexing,OFDM)系统,提出了一种新的基于堆栈式极限学习机(extreme learning machine,ELM)的时变信道预测方法.为了捕获输入数据的深层信息,基于单隐藏层神经网络,首先利用堆栈式ELM方法从历史信道中提取信道的深层特征,并获得网络的初始输出权值.然后,为了适应信道的变化,新方法基于新构造的历史信道样本与初始的输出权值来实时更新网络的输出权值,并基于更新后的输出权值预测得到未来
目前,在非正交多址接入(non-orthogonal multiple access,NOMA)中继通信的研究中,中继用户的选择是随机的,并没有考虑中继节点之间信道条件的差异.为了得到信道条件较好的中继用户,提出一种基于单源最优路径的中继选择策略,从基站广播信号以用户为节点,设定信道参数,寻找最佳传输通路.当信号到达目标节点后,基站从目标节点处收集所有可达通路,通过对比各通路的信道参数,选出一条最好的传输通路.基于所提中继选择策略,在非机会式NOMA系统中,提出一种新的协作传输方法,该方法在中继传输过程中
针对高分辨率模数转换器(analog-to-digital converter,ADC)接收机给大规模多输入多输出(multiple input multiple output,MIMO)系统带来的硬件成本昂贵和高功耗问题,研究了低分辨率ADC在毫米波MIMO正交频分复用(orthogonal frequency division multiplexing,OFDM)量化系统中的应用方案.通过将单输入单输出(single input single output,SISO)量化系统中的广义Turbo信号检测
环境信号的不确定性导致不可预测的谱能机会.传输机会和能源供应的缺乏给反向散射通信网络的多址接入设计带来了极大的挑战.本文针对多载波非正交多址接入(multicarrier non-orthogonal multiple ac-cess,MC-NOMA)增强型反向散射网络,提出了一种分阶段优化算法实现均衡调控下的谱能效率最大化,该问题是非凸的且难以求解.因此,首先将该问题分解成予载波分配和反射系数优化两个子问题,然后基于Gale-Shapley匹配原理提出多对一稳定匹配算法求解最佳的子载波分配,最后利用凸优
针对无人机能量受限且通信易受到窃听攻击的问题,提出一种基于能量采集的无人机无线供电通信模型,并分析其在全双工主动窃听下的保密性能.首先,采用基于仰角的视距和非视距路径损耗模型对地空无线信道进行建模.然后,将无人机的传输中断概率限制在一个可容忍的最大阈值内,得到基站的最优编码速率,进而推导出无人机的保密中断概率的解析闭合表达式.最后,通过蒙特卡罗仿真验证了理论推导的正确性,并分析了基站发射功率、能量采集时间因子、环境等因素对无人机通信的安全性的影响,从而为实际系统设计提供了参考和依据.
在室外光线追踪通信场景下,针对毫米波大规模多输入多输出(multiple input multiple output,MI-MO)信道具有稀疏特性、系统受噪声因素影响导致信道估计精度低的问题,提出一种基于图像去噪的注意力机制卷积神经网络信道估计方法.首先,设定参数产生模拟真实环境的数据集,将所产生的信道矩阵看作二维图像.然后,构建注意力机制网络以增强图像中噪声特征的显著性,并将注意力机制网络嵌入卷积神经网络中进行特征融合.最后,通过网络模型提取噪声并得到去噪的图像,即估计信道矩阵.仿真结果表明,与最小二乘
针对直升机机动飞行过程中存在的输入饱和问题,提出了一种基于参数依赖Lyapunov的状态反馈控制方法.首先根据直升机非线性模型建立纵向线性变参数(linear parameter varying,LPV)模型,并采用逆仿真数值分析方法对悬停机动科目进行轨迹建模.基于吸引域与不变集理论,利用参数化线性矩阵不等式(parameterized linear matrix inequalities,PLMI),分析闭环系统的稳定条件.利用松弛变量技术将控制器PLMI条件转化为易于求解的线性矩阵不等式(linear