论文部分内容阅读
针对移动测量平台难以进行有效机动并受恶劣环境的影响阻碍惯性导航系统在线对准速度和精度提高的难题,提出了一种基于EKF-KF混合动态滤波的移动测量平台在线对准方法。将系统误差方程中的水平失准角和大方位失准角进行分离,采用扩展卡尔曼滤波(EKF)对大方位失准角进行估计,采用Kalman滤波(KF)对水平失准角进行估计,并将方位失准角的估计误差对水平失准角的估计进行修正。仿真结果表明,EKF-KF混合动态滤波缩短了移动测量平台在线对准的估计时间,提高了失准角的估计精度。
Aiming at the problem that the mobile measurement platform is difficult to maneuver effectively and the harsh environment hinders the alignment and accuracy of the inertial navigation system, an online alignment method of mobile measurement platform based on EKF-KF hybrid dynamic filtering is proposed. The horizontal misalignment angle and the azimuth misalignment angle in the systematic error equation are separated. EKF is used to estimate the large misalignment angle. Kalman filter (KF) is used to estimate the horizontal misalignment angle. Then, the estimation error of azimuth misalignment is corrected for the estimation of horizontal misalignment angle. The simulation results show that EKF-KF hybrid dynamic filtering can shorten the estimation time of on-line alignment of mobile measurement platform and improve the estimation accuracy of misalignment angle.