论文部分内容阅读
The results on the uniaxial compressive strength of Arctic summer sea ice are presented based on the samples collected during the fifth Chinese National Arctic Research Expedition in 2012(CHINARE-2012). Experimental studies were carried out at different testing temperatures(-3,-6 and-9°C), and vertical samples were loaded at stress rates ranging from 0.001 to 1 MPa/s. The temperature, density, and salinity of the ice were measured to calculate the total porosity of the ice. In order to study the effects of the total porosity and the density on the uniaxial compressive strength, the measured strengths for a narrow range of stress rates from 0.01 to 0.03 MPa/s were analyzed. The results show that the uniaxial compressive strength decreases linearly with increasing total porosity, and when the density was lower than 0.86 g/cm3, the uniaxial compressive strength increases in a power-law manner with density. The uniaxial compressive behavior of the Arctic summer sea ice is sensitive to the loading rate, and the peak uniaxial compressive strength is reached in the brittle-ductile transition range. The dependence of the strength on the temperature shows that the calculated average strength in the brittle-ductile transition range, which was considered as the peak uniaxial compressive strength, increases steadily in the temperature range from-3 to-9°C.
The results on the uniaxial compressive strength of Arctic summer sea ice are presented based on the samples collected during the fifth Chinese National Arctic Research Expedition in 2012 (CHINARE-2012). Experimental studies were carried out at different testing temperatures (-3, -6 and-9 ° C), and vertical samples were loaded at stress rates ranging from 0.001 to 1 MPa / s. The order of study of the temperature, density, and salinity of the ice were measured to calculate the total porosity effects of the total porosity and the density on the uniaxial compressive strength, the measured strengths for a narrow range of stress rates from 0.01 to 0.03 MPa / s were analyzed. The results show that the uniaxial compressive strength decreases linearly with increasing total porosity, and when the density was lower than 0.86 g / cm3, the uniaxial compressive strength increases in a power-law manner with density. The uniaxial compressive behavior of the Arctic summer sea ice is sensitive to the loading rate, and the peak uniaxial compressive strength is reached in the brittle-ductile transition range. which dependence was considered as the peak uniaxial compressive strength , increasing steadily in the temperature range from-3 to-9 ° C.