互近邻相关论文
分类问题是数据挖掘的主要任务之一。分类算法是指通过训练得到一个分类模型并对未知类别的样本进行预测,它在数据分析中的应用极......
针对聚类算法在检测任意簇时精确度不高、迭代次数多及效果不佳等缺点,提出了基于局部中心度量的边界点划分密度聚类算法——DBLCM......
为减少数据集自带噪声和假近邻噪声两类噪声数据对K近邻插补算法准确性的影响,提出一种融合互近邻降噪的局部动态K近邻插补算法MN-......
数据流分类作为数据挖掘领域中的一个重要分支,能够获取数据流中有价值的信息,已成为当下研究热点之一。数据流具有可变、无限、快......
针对伪近邻分类算法(LMPNN)对异常点和噪声点仍然敏感的问题,提出了一种基于双向选择的伪近邻算法(BS-PNN)。利用邻近性度量选取k......
为解决数据流分类过程中样本标注和概念漂移问题,提出了一种基于实例迁移的数据流分类挖掘模型.首先,该模型用支持向量机作学习器,......
提出路网中的互近邻查询问题.给定路网G(V,E),对象集P,查询点q,近邻数k1和k2,互近邻查询返回既是q的k1近邻,又是q的反k2近邻的对象......
动态数据流分类挖掘应用场景逐渐增多,如何辨识出动态数据流中概念漂移和噪声信息成为数据流分类研究中的重点。因此提出一种具备......
为解决数据流分类中概念漂移和噪声问题,提出一种基于互近邻的多源迁移学习方法。该方法存储多源领域上训练得到的分类器,求出目标......
文章提出一种融合互近邻和可信度的K近邻算法,根据互近邻的概念删除噪声数据;利用由近邻诱导待分类样本标签的可信度,避免待分类样......
针对行人再识别中由于外观差异不显著导致特征描述不准确的问题,该文提出一种基于双向参考集矩阵度量学习(BRM~2L)的行人再识别算......