c-可补子群相关论文
在有限群论中,人们常常利用子群的性质研究群的结构.比如利用极大子群的C-正规性得到有限群的可解性的充分条件.本文首先主要利用......
有限群G的一个子群H称为在G中是c-可补的,如果存在G的子群K,使得G=HK且H∩K≤HG=CoreG(H)本文试图利用子群的c-可补性来研究有限群的......
肯定地回答了Skiba最近在《The Kourovka Notebook》中提出的一个未解决问题。事实上,我们获得了比原问题更一般且深刻的结果。同......
有限群G的一个子群称为在G中是π-拟正规的若它与G的每一个Sylow-子群是交换的.G的一个子群H称为在G中是c-可补的若存在G的子群N使......
利用Sylow 2-子群和Sylow 3-子群的c-可补性得到有限群成为可解的两个充要条件,推广了几个已知的定理.......
利用子群的c-可补性质,讨论了群的幂零性,得到了有限群成为幂零群的几个充分条件,并推广了一些相关的结果.......
文中利用c-可补子群的性质讨论了有限群的p-幂零性,设G是一个与A4无关的有限群,且p∈π(G)使得(G,p-1)=1。如果G中存在一个正规子群N,......
有限群G的一个弱 n-Engle 条件是指:对于G的2个元素x,y和某个非负整数n,[x,ny]∈Z(G)成立,如果存在G的一个子群K满足HK=G和H∩K≤CoreG(......
设H为有限群G的一个子群。称H在G中是s-半正规的,若对任意的素数p||G|,只要(p,|H|)=1,就有PH=HP,其中P∈Sylp(G);称H在G中是c-可补的,若存在G的子群......