Α-FE2O3相关论文
采用水解法结合高温煅烧合成了一种高效的α-Fe2O3/石墨相氮化碳(g-C3N4)复合材料,通过控制前驱液中Fe3+的含量设定复合材料中α-Fe2O......
采用沉淀—煅烧法制备了Ag掺加α-Fe2O3催化剂Ag-Fe2O3,通过TEM、XRD和XPS等手段进行了表征,并将该催化剂用于活化过一硫酸盐(PMS)降解......
为实现非对称超级电容器(ASC)的高电化学性能,以FeCl3·6H2O为铁源,通过水热法将α-Fe2O3纳米颗粒均匀分散在还原的氧化石墨烯(RGO)薄片......
光电化学水解制备氢气是解决能源与环境问题行之有效的技术手段,理论研究表明α-Fe2O3是前景广阔的光阳极材料。但α-Fe2O3固有的......
以FeCl3为原料,三乙烯四胺(TETA)为配位剂,采用微波水解法制备α-纳米Fe2O3。并运用激光粒度仪、FT-IR、UV-Vis对所得产物进行结构和......
氧化铁纳米材料因其特别的物理及化学性质在很多领域都得到了应用,如高密度磁存储、磁电机、磁流体、传感器、生物医疗、太阳能电......
黑釉瓷是我国古代最普遍的色釉瓷品种之一,由于原料易得,故各地都有烧造,尤其在宋代得到迅猛发展。目前,在古代黑釉中已发现α-Fe2O3,......
赝电容超级电容器(以下简称超级电容器)因同时拥有高功率密度和高能量密度而受到广泛关注。开发具有高功率密度和高能量密度负极材料......
在过去的几十年中,人们提出用各种各样的工艺制备不同尺度大小的金属杂化物,包括从块体金属到金属纳米材料,它们在电化学、光电化......
α-Fe2O3是一种带隙合适、性能稳定、廉价易得的金属氧化物半导体,是用于光水解的重要材料之一。但α-Fe2O3亦存在光生载流子迁移......
催化臭氧氧化是处理含酚废水的有效手段,为研究α-Fe2O3催化氧化含酚废水的降解效能同时有效回收催化剂,采用微米级α-Fe2O3催化臭氧......
光电化学(PEC)分解水技术可以将太阳能转化为清洁,可再生的氢能源,具有广阔的应用前景。然而,大规模的PEC水分解技术由于太阳能转化......
水中有机染料的去除,是当今世界水污染处理领域的重要课题。非均相芬顿技术作为重要的高级氧化工艺(AOP),被认为是一种去除顽固有机......
钢铁在轧制工序前一定要进行酸洗处理以脱除表面的氧化皮,目前酸洗工艺主要是盐酸酸洗工艺。但是钢铁在酸洗过程中会产生大量的含......
太阳能光电催化分解水制氢技术作为解决能源危机和环境污染问题的最理想途径,其研究近年来备受各国研究人员的关注。在众多光电催......
随着气候变化和能源问题的日渐加剧,发展传统化石燃料的替代品已经迫在眉睫,清洁能源的开发和利用成为解决当前危机的重要举措。光......
作为一种重要的有机半导体,金属酞菁(MPcs)已广泛应用于各种功能性电子器件设备。酞菁代表的是一个最具有前途和通用的一类有机材料,......
随着工农业快速发展,工业生产过程中产生的挥发性有机物日益增多,已经对生态环境安全和人类正常的生活带来了深远的影响,甚至是威......
过渡金属掺杂TiO2目前仍被认为是最有前途的光催化材料之一,可以用于解决环境问题(如废水处理),但在解释金属离子对TiO2基体作用机......
纳米α-Fe2O3在催化、防腐、颜料和磁记录材料等领域有着广泛的应用。由于纳米材料的许多光学、电学、磁学等性能只有材料的尺寸较......
均分散超细α-Fe2O3胶粒在精细陶瓷、催化、滤光、光吸收、医药、防腐、颜料、感光材料和磁记录材料等领域都已被广泛应用。目前,国......
湿式催化氧化技术目前在处理废水方面起着非常重要的作用,但是由于操作条件过于苛刻而制约其应用,因此,本论文主要是利用水热法制......
以K4[Fe(CN)6]、PEG400和H2O2为原料,通过水热法制备了树枝状α-Fe2O3,并采用XRD、SEM、TEM、SAED和Raman技术对其微观形貌和结构......
目前,Cr(Ⅵ)污染的严重性及去除困难性是重金属污染治理最大的难题之一。而在众多重金属污染治理方法中,吸附法由于操作简单,对设备......
研究了铁基原位α-Fe2O3的制备方法,采用SEM、XRD分析手段对铁板在马弗炉中于600℃、不同氧化气氛和不同煅烧时间下的表层氧化物进......
本论文合成了两种不同类型的含铁复合材料,并应用于环境净化领域,研究了其对水中无机污染物砷(As(III))和有机污染物甲基橙(MO)的去除性......
可见光响应光催化剂ZnIn_2S_4,因其独特的光学和电子特性,近年来受到众多学者的关注和研究,可广泛应用于环境治理和清洁能源等领域......
本工作以无机铁盐作前驱体,以不同结构的表面活性剂作模板剂,通过引入环氧丙烷(PO)作质子消耗剂来替代传统的酸或碱催化剂,分别在......
在太阳能光电催化分解水制氢研究领域中,拓宽光电极可见光响应范围、促进载流子的分离效率和利用效率是提高光电极太阳能转化效率......
氧化铁禁带宽度窄,具有良好的可见光响应,其在光催化领域展现出良好的应用前景。因氧化铁自身存在许多缺陷,例如光生电子-空穴分离......
α-Fe2O3是稳定、无毒、环境友好和耐腐蚀的金属氧化物,由于它具有耐光性、耐候性、化学稳定性等优良的物理化学性质,在金属半导体......
随着工业化进程的加剧,越来越多的有毒有害的难降解有机污染物被直接排入到水环境中,带来了严重的生态环境风险,引发了食品安全和......
对于许多用于分解水的薄膜电极而言,解决光吸收和电荷收集之间的权衡问题一直以来都存在挑战。尽管使用金属背反射器,抗反射涂层以......
作为一个制瓷历史最悠久的国家,中国有着丰富的陶瓷文化,不同时期的陶瓷制品与当时的社会文化及技术水平相结合常常迸发出许多新的......
随着近些年基因治疗的不断深入研究,人们越来越意识到选择合适的载体将治疗基因安全高效地递送至肿瘤部位并实现表达是基因治疗成......
随着人口的不断增加,能源的使用也变得越来越紧张,石油、煤、各种矿石的消耗量日益剧增,解决好能源问题已经成为了当今世界的首要......
锂元素价格高和储量低的特点将在未来极大地限制锂离子电池的发展。相对地,钠元素储量丰富、成本低廉、毒性较低,且锂元素与钠元素......
从1972年利用光电极来分解水以来,利用光电化学太阳能来分解水制取氢气受到了广泛关注。半导体光电极材料成为了光电化学分解水制......
能源危机和环境污染已成为最棘手的全球性问题,因此通过光催化制氢将太阳能转化为化学燃料已经发展成为一种潜在的、有效的获取新......
近几年来,挥发性有机污染物(VOCs)排放量与日俱增,大气污染问题愈发严重,许多国家针对VOCs的排放制定了严格的标准。因此,寻求一种......
化工行业的发展带来了很多环境问题,比如空气,水和土壤污染等,其中水污染物的降解变得越来越困难,因为这些污染物种类变多并且结构......
能源危机和环境问题使得人们对太阳能的关注越来越多,但普通太阳能的能量密度低,无法直接高效利用。因此本文考虑采用太阳能聚光技......
为强化DBD对挥发性有机物(VOCs)的处理效果,本文以天然赤铁矿为载体,分别负载活性组分Bi2WO6、TiO2、CeO2,制备了Bi2WO6/α-Fe2O3、T......
本文主要是通过水热法控制合成不同形貌的α-Fe2O3及其复合物纳米材料,并分别从材料的制备、形成机理和材料性质方面进行详细论述......