初始质心相关论文
K-means算法由于其固有的初始聚类质心敏感性,存在聚类结果不稳定、容易收敛到局部最优等问题。现有改进方案在处理无噪数据集时能......
介绍了在聚类中广泛应用的经典κ-均值算法,针对其随机选择初始质心和易受孤立点的影响的不足,给出了一种改进的κ-均值算法。首先使......
原始的K-means算法,随机生成初始质心,事先给定聚类数k,在该前提下进行聚类,大大降低了聚类的效果。文章是对原始K-means算法的改......
K-means算法以其简单性和快速性在文本聚类中得到广泛应用,但是传统的K-means算法对初值的依赖性很强,需要事先给出要生成的簇的数......
随着互联网的大规模覆盖和电子商务的飞速发展,不断膨胀的网络信息量和网络资源,将用户带入了一个信息过载的时代。伴随着持续增长......
针对聚类中广泛应用的经典k均值算法随机选择初始质心和易受孤立点影响的不足,给出了二次改进的k均值算法。首先使用距离法移除孤立......