多分辨奇异值分解相关论文
机械故障诊断是制造业对设备进行有效基础保养、改良改造的关键,对于保障机械设备的安全、稳定运行和延长设备寿命、提高点检及整......
针对现有滚动轴承剩余寿命预测时寿命特征表征能力不足的问题,提出了多分辨奇异值分解和ECNN-LSTM的滚动轴承剩余寿命预测方法。首......
基于不同铜离子(Cu2+)胁迫梯度下玉米盆栽实验,依据所测玉米叶片光谱数据和叶片中Cu2+含量,通过多分辨奇异值分解(MRSVD)提取光谱......
针对金属磁记忆信号容易受到环境噪声影响,使得缺陷信号可检测性降低的情况,首先,利用传统的奇异值分解方法对场桥主梁磁记忆信号......
提出了一种多分辨奇异值分解(MSVD)的新框架,并把它应用于多聚焦图像融合中。基于分块算法原理,利用奇异值分解获得具有不同分辨率......
针对轴承早期微弱故障特征信息易被噪声掩盖和现实中难以获得大量典型故障样本的实际情况,提出了基于多分辨奇异值分解(Multi-Resol......
为了检测出钢轨断裂点的准确位置,首先基于传输线理论建立钢轨断裂时的机车分路电流幅值包络仿真模型,分析了钢轨断裂对分路电流幅......
针对齿轮箱复合故障信号成分复杂和故障特征难以识别的问题,提出基于多分辨奇异值分解(MRSVD)能量特征和模糊核聚类(KFCM)的齿轮箱......
经验模态分解(EMD)广泛应用在故障分析过程中,特征提取时从状态信息中提取与机械设备故障有关的信息[1]。针对经验模态分解受噪声影......
针对滚动轴承在自身谐振干扰及强背景噪声影响下,滚动轴承损伤时引起调制现象难以检测的问题,提出基于多分辨奇异值分解(Multi-res......
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清......
变分模态分解(VMD)广泛应用于故障诊断中,从振动信号中提取故障特征是故障诊断过程中的关键部分。针对强背景噪声和脉冲干扰下滚动......
大型铁磁构件(如重型齿轮箱、门式起重机、炼钢转炉等)常工作在低转速、重载荷、高温、高压、腐蚀等恶劣工况下,一旦发生故障,会给企业......
对于供输弹系统早期故障中信号成分复杂、潜在故障征兆难以识别问题,提出基于多分辨奇异值分解能量特征和多场信息融合的供输弹系......
针对采集的供输弹系统测试信号成分复杂、故障难以识别问题,提出一种基于多分辨奇异值分解(MRSVD)与灰色理论的供输弹故障诊断方法......
目的:提出一种联合脉冲耦合神经网络改进模型(modified pulse coupled neural network,MPCNN)和多分辨奇异值分解(multi-resolutio......