局部敏感散列相关论文
基于局部不变特征的图像匹配是三维场景重建的基础.本文使用SIFT特征,在LSH算法基础上,提出一种改进的高维数据搜索算法,较好地解......
由于传统局部敏感散列(LSH)算法的删除性能不足,阻碍了LSH算法在实际产品中的应用.提出一种基于压缩位图的改进方法,通过引入压缩位......
文章针对高维图像特征的匹配问题,提出一种新的二分哈希搜索算法(Dichotomy BasedHash,DBH)。对具有大尺度旋转、缩放、视点和噪声......
全k近邻(all k-nearest neighbor,AkNN)查询,是k近邻查询的一个变型,旨在在一个查询过程中为给定数据集的每个对象确定k个最近邻。......
近似k近邻查询的研究一直受到广泛关注,局部敏感散列(LSH)是解决此问题的主流方法之一。LSH及目前大部分改进版本都会面临以下问题......
针对目前视觉位置识别系统无法同时拥有视点不变、条件不变和高效率的性能,提出一种基于视点不变的位置识别系统,采用局部聚合描述......
为实现图像间的快速准确配准,在局部敏感散列(LSH)算法基础上,提出一种高效的高维特征向量检索算法—改进的LSH(ELSH)算法用以图像......