本征模式分量相关论文
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。......
为提高网络流量预测模型对稳定性和精度要求,提出了一种融合经验模式分解(EMD)和全局版人工鱼群LS-SVM模型的网络流量预测算法。该模......
为了有效预测具有一定周期性和随机性的非平稳时间序列性的电力负荷。提高预测精度,提出了结合经验模式分解(EMD)和支持向量机(SVM)的短......
在对复杂网络中微信热点信息发现趋势预测模型研究过程中,微信热点信息一旦数据较大,会形成信息特征的不平稳性,信息形成混淆,采用......
针对癫痫脑电(EEG)信号的非平稳性和非线性,提出一种基于集合经验模式分解(EEMD)脑电的方法,首先利用EEMD将EEG信号分解,得到各阶本征......
针对网络流量时间序列呈现出的非线性、非平稳、多尺度的特点,提出了一种结合经验模式分解(EMD)和粒子群优化的最小二乘支持向量机(LS-......
针对实际机械故障诊断中强噪声背景下难以提取故障特征的情况,提出了一种基于随机共振消噪(stochastic resonance,SR)和经验模态分......
为解决齿轮振动信号在现实中难以获取大量典型故障样本和分类的精确度低的问题,提出基于EMD分解与多特征融合的齿轮故障诊断方法。......
在旋转机械设备故障诊断研究中,故障特征提取和模式识别关系到故障诊断的可靠性和准确性,因此是旋转机械故障诊断研究中的关键问题。......
提出了一种基于经验模式分解和支持向量回归的非线性、非平稳时间序列预测建模方法.首先,针对时间序列的非平稳特征,通过经验模式......
为了提高风电场风速短期预测的精度,提出了将经验模式分解与数据挖掘方法相结合对风速时间序列进行建模预测。对风速时间序列进行......