神经语言模型相关论文
无条件文本生成的目的是生成与真实文本一样高质量、多形式的文本,而使用最大似然估计训练的自回归(Autoregressive,AR)神经语言模型......
对知识表示的学习一直是自然语言处理的研究目标。深层学习架构为我们提供了一种自动学习分布式特征表示的方法。通过对词的分布式......
神经语言模型(Neural Language Model,NLM)作为自然语言处理(Natural Language Processing,NLP)领域里的基础任务,其主要目的是利......
方面级别情感分类的研究目标是针对给定语句所描述对象的特定方面,分析该语句所表达出的情感极性.现有的解决方案中,基于注意力机......
基于神经语言模型生成汉语词语的实值向量表示,称为词语的分布式表示,相应地以这种分布式表示构造的词特征称为分布式词特征.将这种分......
数据并行训练神经语言模型,旨在不改变网络结构的同时,大幅度降低训练所带来的时间消耗。但由于多设备之间频繁的数据传输,使得整......
范畴标注是组合范畴语法解析中的子任务之一,可用于提高解析器的效率和性能.传统的最大熵模型需要手工定义特征模板,神经网络则通过隐......
老-汉双语语料库是开展汉-老机器翻译及跨语言检索的重要数据资源,老挝语是东南亚语言中资源较为稀缺的语言,老-汉双语平行资源较......
方面级别情感分类的研究目标是针对给定语句所描述对象的特定方面,分析该语句所表达出的情感极性.现有的解决方案中,基于注意力机......
词的表示问题是自然语言处理中的关键问题之一。词的表示方法是否适当,直接影响着句法分析、语义表示和理解等任务的建模方法,也影......