自组装Ge量子点荧光的法诺共振增强

来源 :第十二届全国硅基光电子材料及器件研讨会 | 被引量 : 0次 | 上传用户:vpnyoyo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自组装锗量子点因其发光在1550nm左右的通信波段,并且其生长方式与CMOS工艺兼容,引起了人们广泛的关注与研究.利用各种微纳谐振腔结构提升Ge量子点的荧光品质,有望成为实现硅基集成的片上光源的重要途径.本文利用光子晶体平板作为F-P腔反射镜,来增强腔内部的Ge量子点荧光,低温下获得一系列近似等间距的法诺线型共振峰。其中,F-P腔模式因其在水平方向的F-P腔内部谐振,在垂直方向出射很少,可以类比成法诺共振中高Q值的暗模,而锗量子点因其类似点光源的辐射特性,在垂直方向光出射也较多,可以类比成法诺共振中的亮模。两者发生干涉效应,形成不对称线型的法诺共振峰。
其他文献
近年来通过制备硅基Ⅲ-Ⅴ族半导体激光器以实现高性能硅基光源的研究备受人们关注.在Si衬底上外延生长Ⅲ-Ⅴ族激光器材料的方法易于实现Ⅲ-Ⅴ族材料与Si衬底的大面积集成,因而成为一条很有希望的技术途径.本工作在生长了Ge缓冲层的Si(001)衬底上外延生长GaAs缓冲层,利用GaAs与Ge晶格常数非常接近的特点,生长出表面比较平整、位错缺陷较少的GaAs外延层。然后生长了多周期的应变超晶格位错阻挡层,
简并的时间-能量关联光子对作为一种重要的量子资源,有着众多用途,如量子模拟和量子测量等.本文以硅纳米线为载体,基于自发的非简并四波混频首先制备出中心波长为1550nm,3dB线宽为0.1nm的简并的时间-能量关联双光子对,并利用臂长时间差为90.1ps的MZI实现量子干涉,因为MZI两臂长的时间差(90.1ps)大于单光子相干时间(80ps),小于单光子探测器电子跳动时间(271ps),所以理论上
本文系统地描述了一系列银-氧化铟锡(Ag-ITO)共溅薄膜的制备和研究,通过调控薄膜中银的含量,获得了微观结构上的同质混合薄膜,此时少量掺杂的银的含量(<3at.%)被证明具有最优值.同时,银的引入显著增强了ITO中In2O3多晶的择优取向,尤其反映在其(222)、(400)、(440)峰的强度提升.
基于表面等离子体的金属超材料存在欧姆损耗,使得它的谐振峰品质因子难以提高,从而影响了它的潜在运用,全介质超材料能够避免金属层的色散吸收和能量损耗,可以提高品质因子.利用微纳结构的对称性破缺能够获得较高品质因子的谐振,促进了超表面在微纳光子学中的运用.本文设计了一种非对称的氮化硅全介质超表面,它能在可见光波段获得高品质因子的法诺谐振.这种非对称的结构能够产生磁偶极子,增强局域电场,达到捕获光的效果,
包含有纳米硅颗粒的富硅碳化硅(nc-Si/SiCx)薄膜由于其带隙可调等诸多特性,在硅基光电器件中有着很好的应用前景.已有报道指出,由于硼掺杂的nc-Si/SiCx材料具有较宽的带隙(~2.2eV)和较高的电导率(~10-3S/cm),可以将其作为n-i-p结构非晶硅太阳能电池的窗口层,提高了电池的开路电压和短波长波段的外量子效率1,在本文工作中,制备了掺硼的非晶富硅碳化硅薄膜,并通过900℃高温
电磁场的"热点(hot spot)"是电磁场强烈增强的区域,通常形成于耦合结构尤其是金属颗粒之间或者金属颗粒与金属薄膜之间的纳米间隙中.近年来,多个研究组报道了三角棱柱尖端耦合的金属蝶形纳米天线.设计了一种高折射率的全介质蝶形纳米阵列结构,在去除金属的本征损耗的同时,仍然能够在介质颗粒的纳米尺度间隙中形成热点,具有优异的场增强效果。
锗锡是硅基光电子领域最有潜力的材料之一.锗锡不仅可以通过锡组分来调节带隙和能带结构,实现0~0.8eV的带隙可调和间接带隙与直接带隙能带结构的转变,而且锗锡是四族材料,可以兼容现有的硅CMOS工艺.然而,由于锗锡与硅之间具有14%的晶格失配,且锡在锗中的固溶度低于1%,这使得在硅上外延锗锡,特别是高锡组分的锗锡困难重重.尽管如此,人们采用CVD和MBE技术在硅衬底上已经成功外延出锗锡材料,并制备了
基于SOI上Ge虚衬底生长SiGe/Ge多量子阱材料制备了垂直共振腔发光二极管(RCLED).发现RCLED发光强度随注入电流密度增加出现非线性放大,同时在大注入电流密度下出现了FP腔模,说明了Ge在电泵浦下净光增益的存在.在实验结果的基础上,通过优化器件结构设计了出射波长为1600nm的SOI上SiGe/Ge多量子阱垂直腔面发射激光器(VCSEL).
传统的电互连因其有限带宽和高功耗,发展遇到了瓶颈.硅基光互连被认为是最有前景的下一代互连技术,但由于硅是间接带隙半导体材料,发光效率低,实现CMOS工艺可兼容的硅基通信波段发光是巨大的挑战,亟需突破.锗量子点具备发光波段在通信波长内,与CMOS工艺兼容等优点,被认为是一种实现硅基发光器件的可行途径.本文以实现高Q值的锗量子点发光为目标,在包含有13层锗量子点的340nm厚顶层的SOI上,设计制备纳
GeSn合金材料性质优良,由于具有高电子迁移率和能带可调节的优点,近年来在硅基微电子和光电子学领域里备受关注.然而在Si衬底上外延生长高质量的GeSn合金存在着诸多挑战,如:固溶度小、晶格失配等.目前常规的硅基异质外延方法是先在Si衬底上低温生长一层Ge虚衬底,再在Ge虚衬底上实现高质量GeSn合金外延.然而,Ge虚衬底中的穿透位错会延伸到GeSn合金层中,使得GeSn合金中缺陷在106cm-2以