二维碳化钛多孔结构薄膜的制备及其电磁屏蔽性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:y286491357
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二维碳化钛(Ti3C2Tx MXene)是一种高导电新型二维材料,表面丰富的官能团使其具有良好的可加工性,且有研究证明Ti3C2Tx具有优异的屏蔽效能。为解决Ti3C2Tx纳米片堆叠导致的可利用表面减小以及Ti3C2Tx基材料力学性能较差的问题,本实验通过HCl对Ti3C2Tx分散液进行前处理,引入细菌纤维素(BC)作为增强相,结合减压抽滤和冷冻铸造法制备了兼具高效电磁屏蔽和抗拉强度的Ti3C2Tx/BC复合轻质多孔薄膜。具体研究工作如下:采用HCl-LiF混合溶剂刻蚀前驱体Ti3AlC2的方式制备出高质量、大尺寸、单片层的Ti3C2Tx MXene。采用HCl调节Ti3C2Tx分散液的pH值,并结合减压抽滤及冷冻铸造的方式制备Ti3C2Tx多孔结构薄膜。研究结果显示,H+的添加能够置换出纳米片层间的Li+增强薄膜的环境稳定性。通过对分散液pH的调节可以改变分散液状态,进而改变多孔薄膜的形貌实现对薄膜电磁屏蔽效能的调控,且多孔结构的构筑显著提升薄膜电磁屏蔽效能。当调节pH=3时,薄膜取得最大电磁屏蔽效能为63.4 d B,但此时薄膜抗拉强度仅为3.3 MPa。采用抽滤结合冷冻铸造的方式制备Ti3C2Tx/BC复合薄膜及Ti3C2Tx/BC双层薄膜。研究结果表明,Ti3C2Tx/BC复合薄膜由于Ti3C2Tx与BC二者的协同作用使得薄膜有非常好的拉伸性能。Ti3C2Tx/BC双层薄膜可以在实现对力学性能的提升同时,保持较好的电磁屏蔽效能。且双层多孔结构的设计使得电磁波在薄膜层间界面处的反射增大,薄膜的吸收损耗占比明显增加,最高可达到81.9%。因此Ti3C2Tx/BC双层薄膜的设计可以充分发挥两种材料的优势,得到兼具较好屏蔽效能及力学性能且以吸收损耗为主的轻质电磁屏蔽材料。BC添加量为40%时,双层薄膜的电磁屏蔽效能为52.5 d B,抗拉强度为20.6 MPa。采用HCl调节Ti3C2Tx分散液pH值并结合Ti3C2Tx和BC逐层抽滤的方式制备pH调控的Ti3C2Tx/BC双层多孔薄膜,研究其屏蔽效能及力学性能的变化情况。研究结果表明,通过对Ti3C2Tx分散液pH的调控可以一定程度上实现对薄膜屏蔽效能的提升,但由于H+对BC的水解作用,薄膜的抗拉强度有所下降。因此,通过控制H+浓度可以实现对Ti3C2Tx/BC双层薄膜屏蔽效能进一步提升的同时使其具有良好的力学性能。当BC添加量为40%,调节Ti3C2Tx层pH=3,此时薄膜密度仅为0.3 g cm-3,电磁屏蔽效能达53.8 d B,抗拉强度为19.1 MPa。
其他文献
研究背景急性肺损伤(Acute Respiratory Injury,ALI)/急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome,ARDS)是指由感染、创伤、输血、药物中毒等致病因素导致的以进行性低氧血症、呼吸困难、呼吸功增加为表现的致命性临床综合征。流行病学调查显示,ALI/ARDS在ICU(Intensive Care Unit)患者中超过10%,死亡
学位
背景急性胰腺炎(Acute Pancreatitis,AP)发病率日益增加,是消化内科常见的急腹症,约20%的患者可快速发展为中度重症急性胰腺炎(Moderately severe acute pancreatitis,MSAP)和重症急性胰腺炎(Severe acute pancreatitis,SAP),导致全身严重的炎症反应综合征(SIRS),SAP病死率高达30%,但其发病机制尚未完全阐明
学位
背景食管胃静脉曲张(Gastro-esophageal varices,GOV)是肝硬化的常见并发症,是肝硬化患者死亡的主要原因。大约50%的肝硬化患者出现食管胃静脉曲张。它们的存在与肝病的严重程度相关。静脉曲张出血以每年5-15%的速度发生,静脉曲张出血后6周的死亡率约为20%。国外相关指南推荐胃镜下静脉曲张套扎术或组织胶可作为胃底静脉曲张预防再次出血的治疗方案。研究也显示内镜下氰基丙烯酸酯治疗
学位
可充电柔性电源的设计备受关注,是当今快速发展的个性化柔性电子产品的重要组成部分。燃料电池因其高能量密度而特别有前景。在各种燃料中,通常使用的液体燃料,如甲醇、乙醇、尿素等,运输方便,来源广泛,成本低。此外,许多研究者已经将这些燃料电池应用到日常生活中,特别是轻便灵活的燃料电池,具有体积小、重量轻的特点。这些装置由于无法充电、燃料存储困难、燃料渗透性强、离子交换膜成本高等几个严重问题而远离实际应用。
学位
单原子催化剂(SAC)是目前催化领域着重研究的对象,其能够最大限度发挥原子的催化活性。但是,单原子需要负载在其他材料中才能避免团聚,且单原子体系中往往含Pt量不高。MXene虽然具备优异的本征导电性、大的比表面积,但是其固有催化活性不高,限制了它的发展应用。考虑到上述材料的优势和缺陷,将引入二维形态的二硫化铼(ReS2)来提供更大的空间装载Pt单原子。随后,通过离子液体引入N,B,F杂原子,能够大
学位
目的进一步探讨研究综合性护理模式干预剖宫产产妇泌乳启动延迟的具体应用方法和效果。方法对2020年5月21日至9月30日共230名住院产妇进行调查分析,找出干预泌乳启动延迟的综合性护理模式并实施。结果实施综合性护理模式后,住院产妇泌乳启动延迟率显著下降(P<0.01)。结论综合性护理模式有效地降低住院产妇泌乳启动延迟发生率,促进母乳喂养,减少新生儿体重下降率,有助于提高产妇满意度。
期刊
富锂锰基材料由于具有高容量、高操作电压、良好的安全性、成本较低等优点而被视为下一代锂离子电池的理想正极材料。然而,富锂锰基材料仍存在首效较低、循环稳定性差、倍率性能差等问题,限制了其进一步发展应用。本文围绕富锂锰基材料改性优化这一主题,通过单晶形貌调控和晶体结构调控两种手段来获得电化学性能优异的富锂锰基材料,并且结合多种电化学测试和物理表征揭示材料的结构特点和改性机制,为发展高能量密度正极材料提供
学位
背景与目的:糖尿病(DM)的患病人数在世界范围内以惊人的速度不断增加。据统计,2021年全球有5.37亿成年人患有这种疾病。其中,90%的糖尿病患者为2型糖尿病。糖尿病肾病(DKD)是糖尿病累及肾脏所产生的疾病,在我国的发病率呈现上升趋势,已成为当今世界终末期肾病(ESRD)的首要原因。DKD临床以微量蛋白尿到大量蛋白尿伴随肾功能损害为特征,而肾小球足细胞是肾小球电荷屏障的重要组分之一,起着调节肾
学位
邻苯二甲酸酯是工业生产中常用的增塑剂,能提升塑料使用性能,但该类化合物会导致人体出现肥胖和生殖方面的健康问题,邻苯二甲酸二辛酯(DOP)就是其中最具代表性的化合物之一。经DOP催化加氢生成的1,2-环己烷二甲酸二(2-乙基己基)酯(DEHHP)不仅具有同样优异的塑化性能,还对环境和生物无害,因此开发一种绿色友好的DOP加氢工艺具有重要意义。本文从催化剂的设计出发,制备了一种适于DOP催化加氢反应的
学位
以单壁碳纳米管(SWCNTs)和氮化硼纳米管(BNNTs)为代表的一维范德华纳米管由于化学惰性和无悬挂键的表面,被认为是可通过范德华力与其它材料集成的理想平台。中空结构使一维原子晶体(纳米管、纳米线和纳米带)能够填充它们的内部空间,形成独特的同轴一维范德华异质结构,其在新型纳米电子、光电子器件及光电集成系统等方面均有广阔的应用前景。本文在成功制备高质量BNNTs的前提下,使用具有一维结构的硒(Se
学位