芳基亚砜参与的[5,5]-重排反应

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:kikox3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
1,4-二取代芳烃结构广泛存在于许多天然产物及药物分子中,因此,如何快速有效地构建这类结构一直是化学研究人员关注的热点问题之一。芳烃对位直接引入所需官能团是合成1,4-二取代芳烃最为直接的途径,但是目前芳烃选择性对位C-H键官能团化依旧充满挑战。芳烃[5,5]-重排反应为芳环对位选择性C-H键官能团化提供了独特的解决方案。但目前对[5,5]-重排反应研究较少,且这些反应普遍存在底物合成困难、适用范围窄,选择性差,产率偏低等问题。近期,本课题组将Morita-Baylis-Hillman(MBH)反应融入到重排化学,发展了MBH型的重排反应,成功实现了α,β-不饱和腈和芳基亚砜的[3,3]-重排反应。有机碱对芳基亚砜与α,β-不饱和腈组装构建的硫鎓盐中间体的MBH型加成是该反应的关键步骤。以此为基础,本课题尝试通过对Lewis碱进行调整,采用碱性增强,同时亲核性减弱的有机碱,脱除α,β-不饱和亚胺硫鎓盐中间体的γ位质子,构建烯酮亚胺硫鎓盐中间体。随后,该中间体通过[5,5]-重排,得到γ-芳基-α,β-不饱和腈的产物。研究表明:采用三氟甲基磺酸酐(Tf2O),并以托品酮(Tropinone)为碱,可以高效地实现芳基亚砜与α,β-不饱和腈的[5,5]-重排反应。该反应不仅具有条件温和,底物适用范围广以及官能团兼容性优异的优点而且具有极高的区域选择性,该项研究为芳烃选择性对位C-H键官能团化提供了新的策略。更为重要的是,该[5,5]-重排反应与课题组此前发展的MBH型[3,3]-重排反应互为补充,由此实现了有机碱导向的芳基亚砜的[3,3]/[5,5]重排反应,为芳基亚砜重排反应发展提供了新思路。
其他文献
电子的自旋轨道耦合(SOC)引发了多种现象,包括原子物理学中的精细能级分裂,以及在凝聚态物理学中发现的多种新型材料等。一般情况下,中性原子整体没有自旋轨道耦合效应。在固体材料中,电子的SOC性质由材料本身决定,因此很难调控。在超冷原子气体中,利用光与原子相互作用合成的人造SOC却为我们的研究提供了一个理想平台。它具有高度可控的平台,可用来研究奇异的量子现象和新的物质形态,如平面波相、条纹相等,还可
学位
图的对集(匹配)是这个图的边的集合,其中任意两条边都没有公共的顶点.如果图G的某个对集M覆盖了 G的所有的顶点,那么这个对集M就是图G的一个完美对集.Harary在上世纪50年代提出了符号图(G,σ)的概念.2020年,Behr给出了符号图边染色的概念.本学位论文围绕简单符号图的对集进行研究.受符号图边染色的概念的启发,我们首先给出了对集的定义,然后研究了图的对集理论中的Berge定理,Hall定
学位
随着有机半导体材料制备技术的不断优化和改进,有机场效应晶体管(OFET)的性能获得了快速的提升,近几年来OFET已经逐渐被应用于有机光电探测器、电子皮肤、可穿戴电子设备、有机存储器等电子设备,可以预见OFET在其他领域也具有广泛的应用前景。然而,当前基于OFET器件功能的单一性限制了其进一步发展,因此,通过设计和合成新型有机半导体材料以及对器件结构进行优化,实现OFET的多功能集成对于拓宽有机场效
学位
令G是一个有限简单图,分别用△(G)和mad(G)表示图G的最大度和最大平均度.设c是G的一个正常k-边染色.若c满足对于任意边uv∈E(G)都有(?),则称c是图G的邻和可区别k-边染色(简称为nsd-k-边染色).称使图G有一个nsd-k-边染色的最小正整数k为图G的邻和可区别边色数,记为χ’∑(G).我们把不含孤立边的图称为正常图.显然,图G存在邻和可区别边染色当且仅当G是正常图.邻和可区别
学位
以可控的方式调节聚集诱导发光分子(AIEgens)的光学性质(包含光物理和光化学两方面)是一项极具挑战性的工作。本文围绕一系列具有贯穿空间共轭结构的不同经典聚集诱导发光分子骨架合成了几类分别以四苯乙烯、四苯基噻咯、三苯基丙烯腈和丁二烯等为骨架的荧光分子,分别是非金属元素取代的四苯乙烯、重原子取代的四苯基噻咯、单卤代的三苯基丙烯腈及含推拉(D-A)电子结构的衍生物、卤代二烯荧光分子衍生物。不同于传统
学位
氨(NH3)是工农业中最基本的化学原料之一,也是优异的储氢介质。目前,工业上主要采用Haber-Bosch法合成氨,但是该方法需要高温高压,而且在合成氨的过程中会产生大量温室气体,因此寻求一种环保、低能耗的合成氨的方法至关重要。光催化固氮技术可在温和条件下将N2转化为NH3,清洁可再生的太阳光是该反应的驱动力,反应过程中也没有碳排放,因此是一种理想的合成氨的方法。研究发现压电极化有利于光生载流子的
学位
功率超声具有高效、环保、节能等突出优点,使其在航海航天、电子电气、生物医疗及食品工业等诸多领域获得了广泛的应用。超声换能器作为功率超声振动系统的核心部件,其功能是产生大功率和高强度的超声振动能量并加以应用,其性能的优劣直接决定功率超声的应用效果。而传统的超声换能器通常工作于单频振动模式,在实际应用中,已不能满足目前超声技术日益发展的需求。因此,研究开发出一类具有新型结构和多频(或复频)振动模式的大
学位
<正>良好的亲子关系是家庭教育的基础,对于孩子的养育来说,关系先于教育。三个案例让我们看到父母角色在养育孩子过程中的重要作用。孩子在成长过程中需要父母投入时间和精力,否则父母和孩子虽然生活在一起,但是精神世界或许完全分离,这也是导致父母不了解孩子的根源。三位咨询师的咨访过程让我们看到如果想要建立良好的人际互动模式特别是亲子互动,就应该把信任放在核心位置,而信任的前提是理解。
期刊
页岩气是一种重要的以非常规形式存储的天然气能源,其主要的组成成分是甲烷气体。页岩是存储页岩气体的主要介质,孔隙结构复杂,通常具有低渗透率、低孔隙度等特点。这种存储介质有着较多的纳米级孔隙和微尺度裂缝,通常表现为多尺度特征,这种微米级乃至纳米级别的孔隙结构正是气体存储的重要空间。随着孔隙尺度的减小,界面对于气体的束缚力增加,限制在孔隙中的气体将表现出与宏观尺度下不同的赋存行为,以及与常规气藏相比不同
学位
世界面临百年未有之大变局,企业面临的环境愈发动荡不安。一方面,新冠疫情影响下全球经济高度动荡,另一方面,数字化改革给企业创新安上新引擎。在挑战与机遇共存的时代背景下,企业在追逐创新的过程中遭遇失败已达到常态化,因此重视失败的价值并建立有效的失败学习制度迫在眉睫。与此同时,作为企业扭转失败、持续创新的关键要素组织韧性也倍受关注,提升韧性能力、打造高韧性组织成为众多企业所追寻的目标。基于此,本文探讨了
学位