超表面共振增强纳米级光学手性筛选的研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zrn851207
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
快速高效的手性药物筛选技术对保障人民的生命健康安全具有重要意义。光学手性筛选技术具有通用性、快速高效和非侵入性等优点,但筛选尺寸仅微米级,远大于手性药物分子的尺寸(<10 nm),制约了该技术的实际应用。因此,为实现手性药物分子的光学筛选,本文围绕三个关键问题:手性光学响应的激发、非手性光学力影响过大和手性光场强度不足,结合超表面共振增强技术开展了纳米级(<10 nm)光学手性筛选技术的研究,形成了相关理论和方法,有望推动通用型手性药物筛选技术的发展。本文的主要研究内容如下:(1)针对手性光学响应的激发依赖于手性超表面的问题,提出利用斜入射策略在结构简单的非手性超表面上激发手性光学响应的方法。首先设计并制备了圆柱型非手性超表面,搭建了角分辨微区光谱测试系统,测得了高达0.53的手性光学响应值,实验验证了非手性超表面上手性光学响应的激发。接着进一步研究了斜入射角度对手性光学响应的调控规律,发现通过改变入射角度,无需加工多个超表面结构,即可在单一超表面上实现手性光学响应从正到负的渐变调控。最后研究了非手性超表面在不同类型圆偏振光照射下的截面电磁场分布规律,揭示了对称性破缺系统激发手性光学响应的电磁耦合机制。该部分内容为后续对称性破缺超表面增强手性光学力和手性光场的研究奠定了基础。(2)针对光学手性筛选过程中非手性光学力影响过大的问题,提出利用对称性破缺超表面激发高阶法诺共振增强手性光学力的方法。首先研究了对称性破缺程度对超表面共振光谱和光场特性的影响规律,揭示了对称性破缺超表面光谱特性变化的电磁耦合机制。接着进一步研究了对称性破缺超表面上法诺共振的模式耦合机制以及高阶法诺共振的激发,阐明了对称性破缺对法诺共振模式耦合的影响规律。最后揭示了高阶法诺共振增强手性光学力的物理机制,结果表明手性光学力相比于非手性光学力增强了 3.6倍,实现了手性系数±0.5、直径20 nm手性分子的光学筛选。该部分内容为后续纳米级(<10 nm)光学手性筛选的研究开辟了道路。(3)针对纳米级(<10 nm)手性分子的光学筛选面临手性光场强度不足的问题,提出利用对称性破缺全介质超表面激发准连续域束缚态增强手性光场的方法。首先研究了对称性破缺全介质超表面上高品质因数准连续域束缚态的光场局域化增强能力,光阱刚度相比于先前文献中的研究成果提高了三个数量级。接着进一步研究了对称性破缺超表面上准连续域束缚态增强的光场分布,并揭示了不对称参数对共振品质因数、手性光场强度以及手性筛选尺寸的影响规律,结果表明准连续域束缚态下的手性光场强度相比于自由空间中的圆偏振光增强了六个数量级,实现了手性系数±0.004、直径4nm手性分子的光学筛选。该部分内容有望推动手性药物光学筛选技术的发展。本文研究成果为纳米级光学手性筛选技术的实现提供了新的技术途径,有望推动手性药物筛选技术的发展,为手性药物的研究提供了新思路。
其他文献
行人再识别技术旨在实现对特定人物的跨设备检索,能够解决不同监控设备之间的拍摄盲区问题。近年来,该技术已应用于安全监控、刑侦探案、智慧出行和智能交通等多个领域,具有广泛的应用前景。在该任务研究初期,大部分工作采用传统机器学习算法,面向小规模训练数据,力求学习一个分辨能力较强的再识别模型。随着大数据时代到来,研究者倾向采用深度学习算法,利用大量数据训练模型。然而,由于行人出行的随机性,行人再识别任务的
学位
我国城市地铁发展迅速,地铁结构周围土壤和地下水中往往存在腐蚀性介质,尤其是盐渍土地区或者沿海地区,土壤和地下水中侵蚀性离子浓度较高,这严重威胁地铁混凝土的耐久性。同时,地铁所采用的直流牵引供电模式以及轨地之间绝缘性能的下降,往往会导致“杂散电流”的产生。因此,本文针对地铁混凝土结构同时遭受杂散电流与侵蚀性离子的作用而引发的水泥基材料耐久性问题展开了研究。首先,研究了杂散电流与侵蚀性离子耦合作用下水
学位
具有带隙特性的机械超材料,可在特定频率范围内实现弹性波的有效衰减、隔断入射波的传播,可作为新的技术途径应用于工程装备的振动抑制。而有效抑制低频宽带振动是工程装备中亟需突破的瓶颈,机械超材料的低频宽带振动抑制在工程装备中具有十分重要的应用前景。在尺寸和质量约束下,机械超材料难以同时实现低频、宽带振动抑制,这成为制约机械超材料隔振应用的关键技术难题。作为一种易于制造且高性能的结构性材料,穿孔板型机械超
学位
蜂窝夹层构件具有极高的比强度和比刚度、优异的抗冲击、减振、消声、透波、隔热等性能,大量应用于航空航天领域。蜂窝夹层构件由蜂窝芯与上下面板粘接而成,为满足蜂窝夹层构件的制造要求,需要对蜂窝芯的粘接表面进行加工。目前应用较多的蜂窝芯是芳纶蜂窝芯。由于芳纶蜂窝为孔格结构的弱刚度复合材料,采用传统的高速铣削方法加工时,容易产生孔格变形、毛刺、撕裂等加工损伤,蜂窝芯的加工质量不易保证,影响蜂窝夹层构件的性能
学位
组合矩阵是组合学中的基本研究对象.矩阵的全正性和渐近正态性是两个重要的性质.本文研究组合矩阵的全正性和渐近正态性.主要内容分为以下三个部分.第一部分研究进位矩阵的全正性.进位矩阵产生于随机过程中的进位马尔科夫链,是进位马尔科夫链的转移概率矩阵.Diaconis和Fulman猜想进位矩阵是全正的.本部分证明了 Diaconis和Fulman的猜想.进位矩阵是有限矩阵,将进位矩阵嵌入到一个无限的广义H
学位
粗粒土具有压实性能好、透水性强、取材方便等诸多优点,已广泛应用于土木、水利、交通等工程领域。以粗粒土作为主要建筑材料的土石坝、土质高边坡、防波堤、护岸、高速公路路基与高铁路基等工程,在地震或其它动力荷载作用下的安全性与粗粒土的动力特性存在着密切的关系。因此,精准把握粗粒土的动力特性具有非常重要的工程意义。在粗粒土的动力特性研究中,动剪切模量随剪应变的变化规律是土工建筑物等重大工程结构抗震设计、分析
学位
随着信息技术的不断发展,智能手机、笔记本电脑、平板电脑、智能音箱、智慧屏等智能终端产品日益普及,并得到广泛应用。这些终端设备均配备有麦克风或麦克风阵列,利用这些设备,容易构建成分布式麦克风网络,并可用于语音增强、声源定位、说话人跟踪等语音处理任务。与传统的麦克风阵列相比,分布式麦克风网络具有灵活的拓扑结构、大范围的空间覆盖率以及分布式数据处理能力,并在视频会议系统、智能监控系统、人机交互系统、网络
学位
摩擦磨损造成了全球范围内三分之一的能源消耗以及百分之八十的机械部件损耗。因此,如何有效地降低相对运动界面间的摩擦磨损以及提高机械部件的摩擦学性能是亟待解决的问题。超润滑作为摩擦力几乎为零的摩擦状态是在全球能源与资源短缺的背景下实现可持续发展的重要手段。但现有的超润滑技术仅局限在微纳尺度以及特定的气氛环境才可以实现,始终无法在大气宏观条件下有所突破。其次,聚合物复合材料因其重量轻、强度高以及优良的化
学位
低气压空心阴极放电系统通常是由空心圆管和阳极构成的一种结构简单的放电系统。特别是电弧放电模式下,其具有更高的等离子体密度和能量密度,可以在较广的气压和电流范围内稳定运行。自上世纪60年代以来,低气压空心阴极电弧(HCA)作为等离子体源被广泛应用于加工制造、真空焊接、航空航天等各个领域。尽管关于低气压空心阴极电弧放电的实验与应用研究较早,但基础理论方面的研究相对较为滞后,导致其中仍然存在许多悬而未解
学位
具有闭环反馈结构的递归神经网络能实现优化计算、模式识别和联想记忆等功能,但训练困难,较难收敛。因此,简化训练过程的经典储备池计算系统应运而生,但经典储备池结构复杂,硬件实现难、成本高。而由非线性节点附加延时反馈回路构成的混沌储备池计算系统,是一种基于硬件的机器学习系统,在模式识别、实时时间序列预测等任务中表现优异。此外,由于光子系统的带宽远大于电子系统,所以,利用光子器件设计和实现光电混沌储备池计
学位