金红石型二氧化钛的制备及其表面包覆研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:dvluxiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于臭氧层的破坏,能够到达地球的紫外线强度大大增加,保护皮肤使其免受紫外线的侵害引起人们的极大关注。TiO2能够较好的吸收紫外线,具有无毒,稳定性强以及抗紫外老化强等优点,是目前应用最广泛的紫外屏蔽剂之一。TiO2的晶型结构和表面包覆是影响其紫外屏蔽性能的重要因素。然而,TiO2晶型调控困难,禁带宽度大,分散性差,具有光催化活性。基于上述弊端,本文选用重庆某钛白粉厂的硫酸氧钛溶液为钛源,采用表面活性剂辅助法合成金红石型TiO2,并且对金红石TiO2进行硅包覆、铈包覆和铈硅包覆处理。考察了表面活性剂种类和浓度对二氧化钛晶型和紫外屏蔽性能的影响,研究了不同包覆剂对二氧化钛的分散性和紫外屏蔽性能的影响。
  主要研究内容和结论为:
  (1)采用表面活性剂辅助法,以硫酸氧钛为钛源制备得到金红石型TiO2,重点研究了表面活性剂种类对TiO2晶型的影响。结果表明:阴离子表面活性剂(柠檬酸钠和十二烷基苯磺酸钠)对TiO2金红石相转化没有促进作用,阳离子表面活性剂(十六烷基三甲基溴化铵、十二烷基三乙基氯化铵和苄基三乙基氯化铵)在TiO2生成的过程中起了很好的诱导作用,促进TiO2金红石相转化。当表面活性剂浓度大于临界胶束浓度,阳离子表面活性剂形成的胶束表面具有正电荷,静电吸附和[TiO6]八面体的斜边螯合在一起,使得[TiO6]八面体更倾向于共对边生长,并且表面活性剂的阳离子基团的空间位阻效应,阻止了[TiO6]八面体螺旋成长;促进金红石型TiO2的生成。
  (2)研究了表面活性剂浓度对TiO2晶型和紫外屏蔽能力的影响。结果表明:当CTMAB投料浓度大于等于3mmol/L时,产品出现金红石相,且CTMAB投料浓度等于4mmol/L时,样品金红石含量最高;当1231投料浓度大于等于2mmol/L时,产品出现金红石相,且1231投料浓度等于6mmol/L时,样品金红石含量最高;当苄基三乙基氯化铵投料浓度大于等于6mmol/L时,产品出现金红石相,且苄基三乙基氯化铵投料浓度等于15mmol/L时,样品金红石含量最高。TiO2产品出现金红石相,产品的紫外吸收平台上升,吸收能力增强;产品的带隙宽度下降0.2~0.3eV,吸收波长范围增加。
  (3)研究了单组份包覆对TiO2紫外屏蔽能力的影响。结果表明:硅包覆的最佳条件为:包覆温度=40℃,pH=9,硅包覆比例0.03,Na2SiO3浓度0.01mol/L。TiO2@SiO2-3%的紫外屏蔽性能下降21%,电子-空穴对复合速率增加。通过FDTD模拟可知,TiO2@SiO2电子-空穴对的产生速率下降,产品的耐候性增加。铈包覆的最佳条件为:pH=10,包覆温度=50℃,Ce(SO4)2浓度0.02mol/L,包覆比例0.03。TiO2@CeO2-3%的紫外吸收平台值上升54%,电子-空穴对复合速率增加。通过FDTD模拟可知,TiO2@CeO2电子-空穴对的产生速率增加,产品的耐候性降低。
  (4)研究了多组分包覆对TiO2紫外屏蔽能力的影响。结果表明:相较于单组份包覆,TiO2@SiO2@CeO2的紫外吸收平台值上升61%,紫外屏蔽能力最好,电子-空穴对复合速率增加最多,电子-空穴对的产生速率最低,耐候性最好。
  以上研究结果可为金红石二氧化钛制备过程的工业设计和放大提供基础数据,具有重要的科学意义和使用价值。
其他文献
多取代芳烃是许多天然产物、药物分子及有机功能材料的核心骨架。如何高效地制备多取代苯,一直以来都是化学家们的研究重点。芳炔是由芳环邻位失去两个氢原子而形成的高活性中间体,这种结构可以高效地实现芳环的邻位双官能化,在有机合成中有着广泛的应用。几十年来,随着其温和生成方式的广泛应用以及新颖反应类型的开发,芳炔化学取得了蓬勃的发展。此外,通过苯二炔和苯三炔等价物亦可以合成多取代苯。鉴于多取代芳烃的普遍存在
近年来,由于手性有机小分子催化具有反应条件温和,原子经济性好,反应产率高等优点,成为了不对称催化领域中的一个研究热点,并在具有生物活性天然产物和重要药物分子合成中发挥着越来越重要的作用。由于人们对实现更高立体选择性需求的日益增长,本论文关注于如何提高有机小分子催化的立体选择性。在理论计算中,我们主要研究可以实现调控立体选择性的以下两个关键策略:空间相互作用和非共价相互作用。借助理论计算化学的独特优
CO_2作为生命活动的代谢产物和工业副产品存在于大气中,主要来源于火力发电、汽车、建材、钢铁、化工等领域。同时,在自然界中CO_2是碳参与物质循环的主要形式。近年来随着工业的发展释放出大量的CO_2气体,导致大气中CO_2浓度急剧上升,引起了温室效应等一系列环境问题,如何有效降低CO_2浓度、保持自然界碳平衡是亟待解决的重要科学问题。利用风能、太阳能、潮汐能等非稳定可再生能源产生的电能将CO_2电
氢能作为一种高效清洁的新型能源,被认为是化石能源的最佳替代品。电解水制氢具有简单高效,制备氢气纯度高等优点,是最具前景的制氢方法之一。使用高效稳定的催化剂是降低电解水制氢成本的关键,尽管Pt、IrO2等贵金属表现出很好的电催化性能,但其昂贵的价格限制了它们的实际应用。因此,发展非贵金属催化剂势在必行。金属(氢)氧化物作为一类较有前景的电解水催化剂,近年来引起大量的关注。但目前单、双金属(氢)氧化物催化剂存在催化活性不高、稳定性较差等问题,利用多元金属之间的协同效应,研发高效稳定的多元金属(氢)氧化物催化剂
锌银电池具有长期贮存的特点,使用时需要对电池贮存后能提供的容量等性能指标进行预测,从而判断电池是否满足使用要求。目前的研究中,预测锌银电池贮存后性能指标的方法主要是将电池在自然条件下干态贮存几年至十几年后,对电池进行放电性能测试,以此得到长期贮存后电池的放电容量值,这种方法不仅耗时而且成本高,利用加速寿命试验可解决这些不足。为了研究锌银电池在湿荷电贮存加速寿命试验中的合理温度,结合外特性分析法与解体分析法研究了容量型锌银蓄电池(XY-2RS)和功率型锌银蓄电池(XY-2GS)在40℃~70℃贮存之后的放电
电解锰阳极泥是生产电解金属锰时产生的一种固废,目前常规的处理方式是用水简单地冲洗后堆存在渣库。然而,渣库堆存的电解锰阳极泥会严重威胁到当地的生态环境;同时,电解锰阳极泥中还包含有大量Mn、Pb等金属元素,若不对电解锰阳极泥加以利用,还会造成大量金属资源的浪费。因此,如何实现电解锰阳极泥的资源化处理已经成为电解金属锰行业亟待解决的问题。
  本论文以广西崇左某电解金属锰厂的电解锰阳极泥为研究对象,围绕电解锰阳极泥的综合资源化处理,开展了电解锰阳极泥基本特性的分析、电场强化电解锰阳极泥湿法还原浸出以及电
超级电容器由于其高功率密度和良好的循环稳定性而备受关注。超级电容器在电容机制上分为双电层电容(EDLC)和赝电容。双电层电容器通过电极-电解质表面的可逆静电吸附存储电荷。碳基材料因为具有高导电性和非凡的电化学稳定性,而成为双电层电容器电极材料的理想候选材料,其中碳纳米管和石墨烯是碳材料的研究热点。然而,石墨烯片层之间容易发生堆叠,碳纳米管之间容易发生聚集,这会降低其比表面积并且造成不可逆的容量损失。将石墨烯和碳纳米管复合可以弥补各自的缺陷,石墨烯可以为碳纳米管提供支撑平台和有利于电子传输的通道,而碳纳米管
电解水制氢具有巨大开发潜力来实现大规模制氢,而低成本、高效和稳定性佳的析氢电催化剂是该技术能够实现工业化的关键。过渡金属硫化物电极材料由于其优异的电催化析氢活性备受关注,其中镍硫化物(NiSx)因具有成本低、易于制备和在酸性介质中催化活性高的优点最具开发价值。但受制于其本征性质导致硫化物的稳定性较差,制约了其进一步发展。为解决上述问题,本研究选取具有良好结构稳定性的碳材料作为支撑材料,将活性物质锚定在碳材料中从而有效增加其结构稳定性。
  基于此,本论文研究制备了一类新颖的氮掺杂碳包覆二硫化镍电极材
吸附强化甲烷水蒸气重整是一种节能环保,经济适用的新型制氢技术,其通过高温固体吸附剂就地捕获二氧化碳,不仅打破了热力学平衡获得了高纯度的氢气,同时也降低了反应温度。流化床反应器具有气固混合良好、床层温度均匀、传热传质效率高等优势,是吸附强化甲烷水蒸气重整(SESMR)制氢技术潜在的反应器。本文采用欧拉-欧拉流体动力学模型对鼓泡流化床和循环流化床内的SESMR过程进行了模拟研究。
  首先,将重整反应动力学和吸附反应动力学模型耦合到欧拉-欧拉流体动力学模型中,构建了一种能预测流动-传递-反应(重整/吸附
自非线性光学现象发现以来,非线性光学材料被应用在越来越多的领域,如光通讯、生物成像和可调谐激光器等。鉴于非线性光学材料的应用需求,寻找具有强非线性光学响应的非线性光学材料仍然具有迫切性和必要性。由于通过实验方法寻找响应好的非线性光学材料具有周期长、成本高等缺点,而理论模拟不仅不存在这些问题还能预测到实验中无法做到的一些方面。微观分子的第一超极化率常作为材料二阶非线性光学响应强弱的一个衡量标准,且第一超极化率不为零的前提是具备非中心对称性。螺旋石墨烯(HGN)不仅具有独特的螺旋性、手性和大π共轭体系,而且还