复平面上解析Banach空间拟不变子空间的指标

来源 :苏州大学 | 被引量 : 0次 | 上传用户:police
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文我们利用缺项幂级数的方法给出了复平面上解析Banach空间存在任意指标的判定定理,作为应用,我们证明了Fock型空间:Fp(C)={f∈Hol(C):1/π∫C|f(z)|pe-|z|2dA(z)<+∞}与Hilbert空间:H={f∈Hol(C):1/π∫C|f(z)|2e-|z|dA(z)<+∞}具有任意指标.
其他文献
在本文中我们将利用一类增广拉格朗日函数来研究Banach空间上的锥约束向量优化问题(V P).首先我们给出了(VP)问题的增广拉格朗日函数和对偶函数的定义,及一些相关的其他定义,如
本文主要讨论几类光滑与非光滑系统的极限环分支问题.   第一章主要介绍所研究课题的来源、发展历史、研究现状以及本文所讨论的主要问题.   第二章主要讨论一类含有全
一般来说,数字签名就是签名者用自己的私钥对消息进行签名,而验证者则用签名者的公钥对该消息的签名进行验证。由于签名者的公钥是公开的,故每个人都可以验证这样的签名。但有时
在本文中,我们引入了中心仿射超曲面的迷向cubic张量的概念.并且,我们得到了4维仿射空间R4中具有迷向cubic张量的3维局部严格凸中心仿射超曲面的完全分类.
学位
本文通过引入相对良序完备集和良序完备集的概念,给出了偏序集上混合单调映射的耦合不动点的若干存在性定理,在此基础上研究偏序集上抽象的算子方程组耦合解和极大极小耦合解的
当今社会,在数据库和网络技术飞速发展的同时,不完备或不准确的数据也在日益剧增。这种不完备的数据给信息处理带来了不可靠的结果,甚至会严重影响处理的结果。因此,有效、科学、
常微分方程在科学与工程的许多领域中具有重要的应用。常微分方程的数值解法主要包括线性多步法和Runge-Kutta方法。配置方法作为一类特殊形式的Runge-Kutta方法,由于其构造思
全局优化广泛应用于分子生物学、经济、环境工程、信息技术和工业制造等领域.但现实生活中抽象出的大多数优化模型是非凸的,存在多个非全局的局部最优解,求解起来比较困难.线性
随着计算机技术的不断提高和科技事业的高度发展,数值计算已经广泛应用于流体力学,电磁学,气动声学,空气动力学,大气动力学等领域.广泛的应用需求促使我们不断发展高精度高分辨率
摘 要:本文根据我国某段石油管道安装实例,首先对当前我国石油管道安装施工技术现状做了介绍,其次对石油管道安装具体技术做了叙述,最后对石油管道安装过程中的一些质量控制措施做了阐述,以期可给予相关工作者一点借鉴。  关键词:石油管道 技术 安装 问题分析 措施  随着我国经济的快速发展,对石油的需求量也越来越多,对应的石油管道不断被建设,并且这些项目变得更加质量化、精细化、复杂化。通常情况下石油管道安