ZIFs衍生碳材料的改性及其在锂硫电池中的性能研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:axcom
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂硫(Li-S)电池因其较高的理论能量密度,被认为是极具前景的先进储能系统。然而,可溶性中间产物多硫化物的穿梭行为和绝缘性硫物种缓慢的反应动力学,导致硫利用率低和容量快速衰减。本文通过调控沸石咪唑酯骨架(ZIFs)衍生材料的组成和结构,制备了兼具高导电性和高催化/吸附活性的功能化多孔碳材料,其丰富的活性位点能捕获并促进多硫化物氧化转化,快速的电子传递可加快电化学反应动力学,抑制穿梭效应并提高硫利用率。具体的研究内容如下:(1)以双金属骨架CoZn-ZIFs为前驱体,合成了负载丰富Co-Nx位点的氮掺杂多孔碳(Co-NC)。Zn的加入构建了物理屏障,避免高温碳化时Co的团聚,防止金属颗粒结晶,有利于生成高活性的Co-Nx位点。同时,高温下ZIFs热解和Zn的蒸发使材料获得高比表面积(2643.06 m~2g-1)和大孔体积(4.126 cm~3g-1),提供更多的吸附/催化活性位点和快速的离子传输通道。模拟计算和实验表征均证实Co-NC能有效地捕获多硫化物并促进氧化还原过程。Co-NC隔膜电池显示出优良的电化学性能,在4 C电流密度下比容量高达580.9 m Ah g-1,是PP和NC/PP电池的两倍多。(2)为进一步增强材料的催化活性,通过调控前驱体退火温度制备均匀分散的Co-Nx/Zn-Nx双金属节点氮共掺杂多孔碳材料(CoZn-NC)。XPS中双活性位点金属峰的偏移证明Co与Zn的相互作用改变了局部电子结构,硫化锂沉积实验进一步证明,相比于单活性位点,双活性位点增强了放电过程中多硫化物向硫化锂的催化转化活性。双金属活性位点的协同作用使CoZn-NC隔膜电池在高硫面载量(5.4 mg cm-2)下,循环100圈后,仍保持4.1 m Ah cm-2的高可逆面容量。(3)为实现电化学反应过程连续的电子迁移路径,增强电子转移,将ZIFs前驱体原位生长于氧化石墨烯上合成负载Co-Nx/Zn-Nx双位点基三维多孔碳材料(CoZn-NC@rGO)。含氧官能团对金属的吸附使ZIFs颗粒均匀致密地包覆在氧化石墨烯上防止还原过程的片层堆叠,同时石墨烯连接了分散的ZIFs颗粒,将“点对点”的电子传递方式构建成连续的“点线面”传递路径,形成的高连通三维导电网络不仅加快电子转移,增强电化学反应动力学,还提供了丰富的硫存储空间,使CoZn-NC@rGO/S复合正极在73.46%的高硫载量和2 C高电流密度,经历循环200圈维持631.0 m Ah g-1高可逆容量,容量保持率为85%。
其他文献
随着时代发展、社会变迁,民族声乐艺术传统演唱模式已经无法满足现代人们对艺术的较高追求。鉴于此,为推动民族声乐文化更好传承、弘扬,各大院校必须立足演唱多元角度,提升声乐教学水平和质量,助力民族声乐艺术朝着多元化方向迈进。通过系统剖析民族声乐演唱多元发展社会文化背景,了解声乐教学存在的不足和问题,而后依托学校办学特征与发展方向,制定可行性解决措施,以传承民族声乐艺术为基础,改变教学模式,丰富教学内容,
期刊
伴随钛合金在各行业的广泛应用,随之而来的是对钛合金性能提出的更多需求。热氧化因其制样方便快捷、经济成本低以及样品性能优异而被逐渐应用。钛合金经热氧化后可以获得更为优异的机械性能,但同时由于表面粗糙度的增加可能会影响其本身的摩擦学性能。为了更好的发挥钛合金热氧化后样品优异的力学性能,同时满足各个领域对材料抗磨减摩性能的不同要求,本论文以常用的TC4为研究对象,考察了热氧化处理对TC4合金的表面形貌及
学位
钽钨合金是一种广泛应用于航空航天、国防装备等领域复杂恶劣环境中的耐腐蚀高熔点合金。当作为具有特定结构和功能的连接件使用时,钽钨连接件与装备件的相对摩擦难以避免。钽钨合金表面硬度较低,耐磨性差,严重影响了连接件的服役效果。为改善钽钨合金在摩擦磨损环境中的服役性能,采用微弧氧化(Micro-Arc Oxidation,MAO)技术在钽钨合金表面生成坚硬的耐磨膜层,并详细研究其摩擦学性能。本论文的主要创
学位
喷涂油漆是工业领域中保护、装饰设备表面的常用方法,当油漆破损或对设备进行检修时需要去除原来油漆。除漆质量直接影响设备的后续使用与性能。激光清洗作为一种新型的表面清洗技术,相比传统清洗技术具有精确可控、绿色环保的优势,将激光清洗技术应用到油漆涂层清洗领域具有重要意义。本文进行了 2024铝合金表面油漆涂层的激光清洗技术研究。主要从三个方面展开:一是探究了激光入射角度对激光除漆效果的影响;二是利用响应
学位
随着高速时代的到来,电子信息产品越来越朝着小型化、集成化和功能化的方向发展。印制电路板与元器件之间的互连主要依靠焊接,现在对高精度的焊接要求也越来越高,同时传输频率的提高,其时钟频率不断提高,导致信号上升时间不断减小,使得信号传输损耗成为了不可忽视的问题。本工作重点研究了以激光焊接为目标的互连的信号传输损耗,以插入损耗作为表征参数,针对目前印制电路板在高速传输中的信号完整性问题,设计并制造了高速电
学位
新高考模式的尝试,产生了"选课走班制"的应用,这种教学模式充分地尊重了学生的个性,有利于实现因材施教的教育目标,也能让高中生更早地体验到大学的教学方式。但是,由于走班制的推行,也使得班级的管理变得更加艰难,通常会反映出,同学们对班级的观念不够深刻,班主任管理职能受限等问题。在此基础上,对走班制班级管理中出现的一些问题进行了分析,以及如何优化走班制班级管理的模式。
会议
高镍镍钴铝酸锂(LiNi0.8Co0.15Al0.05O2,NCA)正极材料由于其高可逆稳定性、优异的加工性能和储存性能被认为是一种很有前景的高镍正极材料的候选者。但是由于NCA合成过程中锂源的过量加入和表面晶格氧的析出,会导致材料表面残留碱性锂盐的过量堆积。而过量的碱性锂盐会加速电解液的水解、加剧HF对材料的腐蚀、产生气体等,这不仅会使得材料的电化学性能减弱,而且还会导致电池的安全性能变差。为了
学位
随着5G/6G电子通信技术朝超高频率、超高速率以及低延迟的方向发展,对电子基材的电性能以及力学性能提出了新的挑战。以玻璃纤维环氧树脂(FR4)和聚苯硫醚(PPS)为代表的高频介质基材因具有低介电常数、低介电损耗以及较强的耐化学性等优点被视为开发5G/6G高频通信技术的理想材料。由于FR4与PPS受到表面粗糙度较小且缺乏可吸附金属粒子的极性基团的条件限制,使得难以在其表面制备粘附强度较高的金属层。因
学位
湿度作为一个重要的环境参数,在农业仓储、环境监测、工业制造等多个领域需要被严格监测,人们对湿度传感器的灵敏度、滞后性、响应时间、长期稳定性、湿度量程等性能指标提出了更高的要求。在各类湿度传感材料中,二维过渡金属碳化物/氮化物(MXene)由于其独特的物理和化学性质得到许多学者的关注研究,但MXene在潮湿的空气或水中表现出的低稳定性及不够迅速的响应恢复时间,仍然限制了其在湿度传感器中的广泛应用。本
学位
基于扇出型晶圆级封装的超薄层叠封装和挠性电子互联等技术,可满足消费类电子产品对于轻薄化和小型化的需求,在未来智能电子系统领域具有重要应用前景,而聚合物材料表面金属化是超薄Po P封装、挠性电子互联等实现后续互联电路制备的关键技术之一,受到行业的广泛关注,其研究热点有金属化层的电气性能、镀层与基板的结合力等。论文基于实际需要,研究了SiO2填充型环氧树脂基板和PET基材两种材料表面化学镀铜沉积技术。
学位