细晶AZ31镁合金交替反挤压制备及挤压成形增塑机制

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:suing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镁合金是目前工程实际应用中最轻的金属结构材料,它兼具多种优异的综合性能,可与钢、铝、塑料等材料实现优势互补,在航空航天、轨道交通、武器装备等轻量化急需领域有着广阔的发展潜力及应用前景。挤压过程中的塑性变形区内为三向压应力状态,能够提高金属的塑性变形能力,有助于变形量的不断累积,逐渐成为镁合金构件的主要加工手段之一。本文提出了细晶镁合金交替反挤压制备新方法,在此基础上挤压成形高塑性镁合金型材,揭示了加载过程中的变形流动规律,构建了载荷预测模型,分析了受力状态与晶体取向分布特征之间的关联性,系统研究了压下量和制备道次对交替反挤压制坯微观组织及性能的影响规律,阐明了镁合金型材的增塑机制,为剧烈塑性变形的准连续性加工提供新途径。基于平面应变假设,结合应力边界条件和流速场分布特征,构建了不同压下量条件下的滑移线场。利用虚功原理和最大塑性功消耗原理建立功耗平衡方程,采用上限法思想推导载荷预测模型,并根据亨盖应力方程对特征变形区的平均应力进行求解。成功地建立了有心扇形滑移线场,及与压下量、剪切应力有关的载荷预测分段函数,绘制出了载荷变化曲线,实现了应力分布的可视化表征。通过有限元分析了交替反挤压过程中金属流动规律,结合模拟载荷曲线变化特征进一步验证了预测模型的准确性。进行了镁合金交替反挤压制备实验,利用金相观察和EBSD测试研究了制备过程中的微观组织演变,明晰了变形区各点的应力状态与晶体取向关系,结果表明,材料的变形流动协调了交替加载时的局部变形,导致有限元模拟所得载荷曲线平稳值高出载荷预测值8.14%。制备道次可以调控制备组织晶粒尺寸的大小,8道次后平均晶粒尺寸在5.58μm左右,其中,最小晶粒尺寸能够达到1μm。材料内部产生了择优取向,基于滑移线场沿线特性求解出的应力分布状态有助于辨析坯料内部特征变形区的晶体取向分布。针对交替反挤压制坯后挤压成形的镁合金型材,结合XRD和极图结果,分析了织构演化规律。通过晶界数量、局部位向差角分析以及不同方向的Schmid因子探究了挤压成形镁合金型材的增塑机制。在实验过程中发现,仅需4道次交替反挤压制坯即可达到组织的最优细化,平均晶粒尺寸达到5μm左右。继续增大道次后,动态再结晶形核与高温下晶粒长大达到了平衡。随着晶粒尺寸减小,晶界数量增加,镁合金的变形协调能力升高,完全动态再结晶弱化了双峰织构,降低了位错密度,使得Schmid因子值增大,在室温条件下多种因素共同影响使得型材塑性大幅提高。
其他文献
装备制造业作为我国建设制造强国和推进供给侧结构性改革的关键,其发展决定着我国经济的发展。复杂的国际形势为装备制造企业发展带来阻碍的同时,也暗含着发展的契机,并且装备制造企业长远发展一定是参与国际大循环的。因此,寻找并抓住发展契机,并从GVC(Global Value Chian)参与“客场”向治理“主场”转变,是我国装备制造企业摆脱窘迫现状并在GVC上获取优势的关键。服务化通过打通研发、生产、分配
学位
随着汽车产业的蓬勃发展,振动和噪声已成为评价汽车品质的重要技术指标。研究表明,汽车噪声的30%源于变速箱,因此如何降低变速箱噪音成为汽车减振降噪研究的重点之一。变速箱噪音主要是由于变速箱齿轮啮合质量不高,且齿轮材料阻尼性能偏低所导致的,故寻找高阻尼的传动件替代材料成为变速箱减振的关键。目前,变速箱齿轮多采用低合金钢,而奥贝球铁(ADI)是通过等温淬火处理后得到以针状铁素体和奥氏体组织为基体的球墨铸
学位
换流变压器作为特高压直流输电系统中最核心的设备之一,在绝缘试验和运行过程中,其阀侧主绝缘承受直流和极性反转电压作用。主绝缘采用油纸复合绝缘结构,在直流电压下形成复合绝缘极化,油纸界面积累大量的空间电荷,直流电压极性反转时,前期积聚电荷消散并积聚反极性空间电荷,出现高幅值暂态电压。随着换流变压器运行年限增加,主绝缘的纸板逐渐老化,复合绝缘极化特性会发生改变。为了提高换流变压器运行可靠性,有必要在直流
学位
祁连山是我国西北地区重要的生态安全屏障,而高寒草甸是东祁连山主要的草地类型,对维持祁连山生态系统的稳定发挥了极大的作用。但由于气候变化和人类不合理的利用,导致该区域的高寒草甸严重退化。在全球变暖的大背景下,地形复杂的祁连山区,因海拔和坡向等微环境引起的高寒草甸生产力的变化并未受到足够的重视,草场承包后的等量载牧等进一步加速了高寒草甸的退化。海拔和坡向的变化共同影响着草地植物特征,土壤物理结构、养分
学位
Mg-Sc形状记忆合金是现今最轻的形状记忆合金,具有优良的超弹性性能、耐腐蚀性以及延展性,是一种具有广阔前景的新型智能材料。然而,Mg-Sc形状记忆合金的相变温度极低、成本极高且硬度较差。这些问题严重制约了这类轻质形状记忆合金的工程应用及发展,且至今仍未被解决。究其根本原因是关于Mg-Sc形状记忆合金马氏体相变机理尚不清楚,导致缺乏有效解决这些问题的办法。本文基于第一性原理计算的方法,系统地研究了
学位
目的:多囊卵巢综合征(polycystic ovary syndrome,PCOS)是一种常见的生殖内分泌疾病,其发病机制尚不完全清楚,高雄激素血症(hyperandrogenemia,HA)和胰岛素抵抗(insulin-resistance,IR)可能是导致PCOS生殖和内分泌代谢紊乱的关键危险因素。目前对症治疗仍在PCOS的临床治疗中占主导地位,主要包括调节月经周期、抗HA、体重控制、减轻IR
学位
随着通信技术的快速发展,复杂网络已经被广泛应用到交通网络、智能电网和社会网络等诸多领域中。为了深入探索复杂网络的动力学行为,复杂网络的状态估计算法设计问题受到了广泛的关注。由于不确定的网络传输环境,通常需要考虑不可靠通讯情况(不完全观测和信息调度策略等),这会给复杂网络的分析和综合问题带来一定的困难。目前,针对时变复杂网络,考虑不可靠通讯下方差约束状态估计的研究成果相对较少。因此,本文旨在探讨不完
学位
目的 概述泊洛沙姆(Poloxamer)在原位凝胶制剂中的应用。方法 查阅近年国内外关于泊洛沙姆应用在各种途径给药的原位凝胶制剂的相关文献,并对其进行归纳,整理与总结。结果 泊洛沙姆是一类热敏性高分子聚合物,在不同的生理温度下可以实现溶胶到凝胶的转变,在皮肤给药、粘膜给药、口服给药和注射给药过程中都得到了广泛的应用。结论泊洛沙姆在原位凝胶制剂中有着广泛的应用前景。
期刊
储能系统作为纯电动汽车的动力源和智能微电网的核心部件,扮演着能量的存储、调度、转换及供应的重要角色。锂离子电池因具备能量密度大、输出电压高、循环寿命长、无记忆效应等特点,被广泛用于储能系统领域中。随着大量的锂离子电池成组化使用,系统的电学行为特性、温度敏感性、老化特性变得异常复杂。同时,由于锂离子电池比能量的不断提升及愈加复杂的应用场景,因电池故障导致安全性方面的问题也愈显突出。这些问题给储能系统
学位
在实际系统中,许多随机动力系统不仅会受到一些随机因素的干扰,如Brown运动、Lévy噪声和有色噪声等,可能还会遭遇一些突变现象,从而导致系统在参数或结构上发生随机突变。为了更精确地描述这类系统,衍生出了混杂随机微分方程,即用随机微分方程刻画系统状态的连续变化、用有限状态Markov链刻画系统状态变化中的随机突变影响。另外,实际系统的演化不仅与系统当前的状态有关,还可能与过去的状态有关,所以有必要
学位