二维光子晶体负折射平板透镜的成像分辨率极限研究

来源 :北京大学 | 被引量 : 0次 | 上传用户:xinxinde1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文介绍了在光子晶体和负折射方向上所做的理论和计算工作。主要由以下三部分组成: 第一章介绍了负折射和左手材料的发展情况,从最初负折射概念的提出,到负介电常数材料,负磁导率材料,左手材料的理论和实验实现,在这一章中略作说明。 第二章介绍了负折射的一个重要应用--完美透镜。完美透镜具有很好的理论和实用价值,可以使用左手材料来制备接近完美透镜的负折射平板透镜。本章的后半部分介绍了基于光子晶体的负折射平板透镜,光子晶体是一种新型的人工合成材料,满足一定条件的光子晶体平板同样可以实现负折射,而且和左手材料相比,其结构更简单,可以容易的加工到更小的尺度,从而实现光学波段的负折射,不过由于光子晶体和左手材料实现负折射的原理不同,其成像分辨率有一定差异。 第三章用FDTD数值模拟方法研究二维光子晶体负折射平板透镜的成像分辨率。首先我们通过改变点光源的相对位置和间距,研究不同方向的成像分辨极限。并且通过和左手材料的实验结果的比较,从理论上分析了成像分辨率差别的原因。然后,我们通过改变光子晶体的空气孔形状,研究不同的结构对于成像分辨率的影响,得到了对称性最高的圆孔结构的成像分辨率最高的结论。
其他文献
根据麦克斯韦的经典电磁场理论,电磁场同时载有能量和动量,其动量包括线动量和角动量.电磁场的总角动量可以分解为两个部分:一是与空间分布有关的轨道角动量;一是与偏振有关的自
铁电体的共同特征是具有自发极化,并且在外加电场的作用下,极化会发生反转。铁电体的本质特征是存在电畴。在一定条件下,按照预先设定的方案构造铁电畴结构并控制畴区的自发极化取向(开关),是多种功能器件实现的基础。人工设计的铁电超晶格可用于多种电光调制器件,在外场控制下的铁电畴的开关特性则应用于数据存储。基于高电压的原子力显微镜(HVAFM)技术可以获得微/纳米尺寸的畴结构。而由于铁电晶体中畴弛豫关乎电光
在原子吸收光谱分析中,需要引入光子逃逸因子来描述谱线的自吸收。此研究对光谱定量分析具有重要参考意义。本论文主要利用逃逸因子的基本理论,对影响逃逸因子的因素进行理论分
半导体量子点玻璃是一类重要的复合纳米材料,在纳米科技中占有重要地位。半导体在玻璃基体中生长形成具有纳米尺寸的量子点,这是一个三维受限的准零维结构,具有显著的量子尺寸效
光Stark效应(opticalStarkeffect简写为OSE)也叫acStark效应,首先是70年代出现在原子系统研究中,后来主要用于研究半导体材料和量子阱。在电磁场作用下,强光可以改变电子、空穴
本文用自洽集体坐标(SCC)方法,将有限系统动力学地分为集体系统和内禀系统两个子系统,研究了两个子系统在弱耦合相互作用条件下,集体系统的动力学性质。在没有人为地引入任何统
本文首先简要回顾了单个D膜的作用量,以及当多个D膜叠合在一起时的非阿贝尔推广。从中人们可以得到一些静态解,其中并侧重于与非阿贝尔DBI作用量相关的一些解,其中有“胀开”解
光流控是一种新型光学操纵技术,可以操纵微纳尺度下的粒子或液体,以实现所需的光学成像或粒子捕获。光流控将微流控技术引入传统光学之中,通过控制液体之间的扩散,从而控制激光的行进方向,进而实现光学器件的功能。与传统固体光学器件相比,光流控器件引入液体可以增加实验的灵活度,实现对光学性质的实时调控,方便而且高效。光流控技术可以通过控制液体扩散从而控制折射率分布,实现所需的光学偏折和所需的光学成像;光流控技
学位
近年来,以LED(light emitting diode简称LED)作为新一代照明光源的研究受到国内外研究人员的广泛关注,此项技术在应用方面日趋成熟,但在白光发射方面仍存在一些问题,如荧光转换法
ZnO是一种宽禁带直接带隙Ⅱ-Ⅵ族半导体材料,晶体结构为纤锌矿结构。室温下的禁带宽度为3.37eV,激子束缚能高达60meV,比其他宽禁带半导体材料的激子束缚能高很多。这些特性使ZnO