松木结构衍生的高效镍基催化剂研制及工业煤气化废水/甲烷重整策略研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:tianshi581
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
中国“富煤、贫油、少气”的基本能源结构,使得通过煤气化技术对煤炭进行高效、清洁的转化具有重要意义。尽管国内煤气化技术已经相当成熟,但煤气化过程中的两个主要问题(废水和能源浪费)尚未解决,是严重制约其效益的主要障碍。为解决污水、能量损失以及热煤气脱硫等问题,本文提出了一种残余蒸汽/CH4重整的新策略,并首次制备出一系列由松木衍生的新型催化剂,用于工业煤气化的粗合成气的余热利用及后续的原位脱硫。研究表明在新型催化剂的帮助下,借助甲烷蒸汽重整反应可以除去煤气化尾气中大部分水蒸气,从而有效利用尾气余热、显著减少废水的产生。本文首先在大量合成气存在的条件下,对热蒸气/CH4重整反应的可行性进行了详细的热力学分析。计算结果表明,在模拟尾气条件下,甲烷热力学平衡转化率可以超过96.1%,充分说明通过甲烷重整反应去除残余水蒸气的策略是可行的。同时,首次使用溶胶凝胶法制备了一系列新型松木衍生的钴掺杂镍基催化剂,并在模拟工业煤气化的粗合成气的条件下,对催化剂上的残余蒸汽/CH4重整反应活性进行了评估。相比较传统商用Ni/Al2O3催化剂,新型催化剂表现出极其优异的活性和稳定性,证明松木衍生的有序的直通道结构不仅有效改善了气体扩散行为,而且在850oC的甲烷水蒸气重整反应中保持良好的完整性。XRD和TG结果显示适量钴掺杂提高了催化剂表面Ni粒子的分散性,并提高了催化剂对甲烷的脱氢能力,其中Ni9Co1/Al2O3-S表现出最高活性(81.6%)。采用湿浸渍法制备了松木衍生镍基催化剂,并研究了Nb和Ca掺杂对催化剂活性和稳定性的影响。结果表明,相比溶胶凝胶法,湿浸渍法制备出的催化剂有更高的活性位点,从而表现出更高活性。尤其是10Ni-1Nb2O5-1Ca O/Al2O3-I催化剂表现出最高的甲烷转化率(93.4%),远高于Ni9Co1/Al2O3-S,并且在88 h的长时间段测试中,其甲烷转化率一直稳定在89.8%且没有下降,非常接近热力学平衡计算的结果。同时,去除残留蒸汽后的热煤气脱硫效率提高了303.1%(从62 mg/g增加到249.9 mg/g)。此外,XRD,UV-Vis DRS和TG结果证明,适量的Nb和Ca掺杂通过纳米粒子之间的隔离和插层作用提高了镍纳米颗粒的分散性和耐焦炭/烧结性,从而抑制了Ni~0活性位上的碳沉积物的形成。总之,上述研究内容提出了一种制备各向异性松木衍生催化剂的新颖方法,并为去除工业煤气化的粗合成气中的残留H2O提供了新的策略。
其他文献
人类社会步入21世纪后,以能源为支撑的经济得到了迅速发展,伴随而来的是严重的环境污染和能源危机。大力寻求可替代化石燃料的二次能源同时提升可再生能源比如太阳能利用率成为我国发展的战略目标。而光电催化分解水技术利用半导体光电极直接将太阳能转化成清洁和可再生能源(例如氢),可有效解决能源需求并降低对环境的污染。高效、稳定的半导体光电材料设计与制备是实现高性能光电催化水分解的关键。该技术目前面临的最大挑战
学位
外延生长的贵金属核壳结构由于其独特的物化结构引起了广泛的研究兴趣。核与壳原子之间的晶格失配及功函的不同,通常会带给核壳结构表面的几个原子层应变效应、配体效应等,影响整个催化反应动力学。核壳结构通过调整核的大小、形状、组成及壳的种类、厚度等,为实验优化催化性能带来更多可能。本论文通过调控钯基纳米材料的表界面结构,显著改变了其在分解水析氢,甲醇氧化等电化学反应中的催化性能,结合材料表征与理论计算,详细
学位
杂环化合物是种类繁多的一类有机物,并且广泛存在于自然界中。与人类生物学息息相关的重要化合物大多数为杂环化合物,例如:核酸、维生素、抗生素、激素、色素和生物碱等。此外,还有多种人工合成的杂环化合物具有重要的性能,在医学上杂环化合物可作药物,在农业方面也可以作为杀虫剂、除草剂,在工业上可作染料、塑料等。在生活中最常见的是五元环和六元环;包括呋喃、噻吩以及吡咯等。呋喃主要用于药物合成以及食品香料;噻吩可
学位
电致化学发光(Electrogenerated Chemiluminescence,简称ECL)已发展成为一种高效、灵敏的分析方法广泛应用于体外诊断、环境检测、生物分析等领域,但目前仍存在新型发光体不足、发光效率不够高、大多数有机发光体在水相体系应用受限等问题。近年来,聚集诱导发光(Aggregation Induced Emission,简称AIE)分子以及共反应剂促进剂的发展为ECL领域注入新
学位
药物的两个对映异构体在药理学和毒性等方面差异显著,寻求合适的方式进行高效手性拆分意义重大。本文制备了一系列硫醚桥联新型环糊精(CD)手性固定相材料(CSPs)用于手性药物的分离,探究了CD的本征识别能力、桥联臂的官能团类型、CD固载量、硫醚键连接方式及数量等多种因素对手性分离的影响,为新型CD CSPs的设计制备提供了有益参考。(1)通过“巯基-烯”点击化学反应合成了单硫醚桥联的CD CSP(CS
学位
配位聚合物的结构丰富,功能多样,在分子及离子的识别检测、气体的储存和吸附、催化反应以及生命科学等方面都有广阔的应用前景。而2-脱氧-D-核糖作为生命体中遗传物质的重要组成成分,其在化学和生物学上的潜在应用价值也正在不断被挖掘。尚未见文献报导以2-脱氧-D-核糖衍生物为配体的配位聚合物的研究。本文的主要内容如下:1.以2-脱氧-D-核糖为手性原料,通过异烟酸修饰合成了一种新的手性配体(2S,4S,5
学位
有机光电材料目前在有机场效应晶体管,有机太阳能电池,有机发光二极管等领域都有广泛应用,聚合物材料也因本身所具有的良好的溶液加工性及柔性得到了广泛关注。当前,一种被命名为介观聚合物的新型聚合物材料得到了报道。这种介观聚合物合成更为简便,且同相偶联缺陷更少、溶解性更好。有机发光晶体管作为一种集成了有机场效应晶体管及有机发光二极管功能性的新型器件对材料的性质要求更高,需要材料同时兼具双极性传输及发光性能
学位
氮杂环化合物在天然产物和合成药物中无处不在,其中,吲哚嗪是一种重要的含氮化合物,是吡啶型六元环与吡咯型五元环的稠合骨架。同时,溴二氟乙酸乙酯是重要的碳源和氟源。向药物分子中引入含氟基团能够有效地改善药物的代谢稳定性、亲脂性、膜通透性等一系列生理及物理化学性质。二氟甲氧基因其具有特殊的性质,常被用来改善含有醇、酰胺、硫醇等官能团的大分子的脂溶性。在新药研发中,区域选择性的修饰吲哚嗪骨架相当重要,同时
学位
锂离子电池因其能量密度高、功率密度大和自放电低等优点,广泛应用于电动汽车、智能电网、便携式电子设备等领域。在此基础上,开发出新的具有更高能量密度,更低成本,更具发展潜力的锂离子电池负极材料成为当务之急。硅具有约4200 m Ah g-1的理论容量,约0.4 V的工作电位(vs.Li/Li+),被研究人员视为构建下一代锂离子电池的明星材料。然而在充放电过程中,硅的体积膨胀超过300%,导致硅的破裂、
学位
光催化技术对解决日益严峻的能源短缺和环境污染问题具有重要的意义,因此,开发高效且低成本的光催化系统是非常必要的。然而如何充分利用太阳能并阐明其反应机理仍然是一个巨大的挑战。同时,设计具有竞争力和优异性能的光催化剂,探索其工业应用价值具有十分重要的意义。作为一类新颖的光催化材料,封装型金属纳米催化剂因其可调谐的表面化学性质、易修饰的电子结构和高的催化活性,而被认为是极具吸引力的候选材料。研究表明将金
学位