基于ZnS薄膜的忆阻器及其光电突触器件的应用研究

来源 :西南科技大学 | 被引量 : 0次 | 上传用户:wwwww1980wwwww
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,人工智能的应用越来越多,在很大程度上改变了人类的生活方式,同时也对人工智能技术的发展提出了新的要求。目前使用的人工智能工具都是基于传统的冯·诺依曼计算机实现的深度人工神经网络,它的数据处理单元和存储单元在物理上是分离的,数据传输单元是独立的,其运行受到了严重的限制。神经形态计算旨在构建能够模拟人类大脑生物过程的计算机,是实现人工智能的一个有前景的解决方案。忆阻器具有简单的三层结构,高集成度以及优异的数字模拟功能,因此有望成为下一代神经形态计算系统的构成单元。ZnS是一种Ⅱ-Ⅵ族直接宽禁带化合物半导体,禁带宽度达3.5-3.7 e V,原料丰富、毒性小,具有优异的光电性能,被广泛应用于光电二极管、薄膜太阳电池、光电探测以及电致发光等领域,同时,基于ZnS的复合材料也被广泛用来制备忆阻器,并且具有良好的性能,因此本论文以ZnS薄膜为介质层。采用热蒸发设备制备ZnS薄膜作为忆阻器的介质层,通过调控薄膜的工艺参数,获得了基于ZnS薄膜的忆阻器。首先,制备了不同顶电极的忆阻器,对比后发现Au/ZnS/Pt具有优异的电学性能。之后对ZnS薄膜的沉积温度进行了对比,发现在500℃下生长的ZnS薄膜具有良好的致密性,薄膜性能更加优越。对Au/ZnS/Pt忆阻器进行了电学测试,发现该器件具有良好的电学性能,良好的循环特性和保持特性,并且具有超过1010的超高开关比,与同类型器件相比目前是最高值,表明该器件具有优异的数字存储性能。基于Au/ZnS/Pt忆阻器,将光信号引入到器件的工作模式中,获得了可自由切换的光电流增强和光电流衰减两种模式。其机理是由于光激发的电子在薄膜内部的俘获/去俘获行为所引起的。在此基础上,探究了在不同光条件,包括光功率密度、波长、光照时间等,对器件性能的影响及规律。同时该器件具有超低的功耗,功率在p W量级。最后,实现了光控的生物短程可塑性及突触的双脉冲易化(Paired-Pulse Facilitation,PPF)和双脉冲抑制(Paired-Pulse Depression,PPD)功能的模拟,并通过拟合函数得到了与生物突触相吻合的结果。进一步实现了对视觉明暗适应的模拟。本研究制备了基于ZnS薄膜的忆阻器及具有光电突触功能的双模式器件,具有超过1010的超高开关比,同时实现了光控的生物突触模拟和视觉适应的应用,该器件在数字存储和机器视觉领域具有巨大的应用潜力。
其他文献
随着核技术的不断发展,涉核场景也越来越多,为了保障涉核人员及环境安全,针对放射性污染的控制与清除显得尤为重要。放射性去污的方法不在少数,其中可剥离去污技术具备施工较为简便、去污率高、产生废物较易后处理等优势,得到了广泛的应用,而可剥离去污剂也成为了研究热点。传统有机溶剂型可剥离涂料在生产和使用过程中含有大量的挥发性有机化合物(VOCs),所以环境友好型去污材料受到越来越多的重视,具有环境友好特性的
学位
高氯酸铵(AP)作为一种氧化剂被广泛应用于固体推进剂中,其吸湿性和热分解性能直接影响推进剂的热稳定性及燃烧性能。为了改善AP的防吸湿性,同时提高AP的热分解性能,本文采用聚多巴胺(PDA)作为一种界面材料包覆于AP,然后利用PDA优异的粘附性能,分别用非含能的纳米金属氧化物和含能的纳米金属配合物对其进行二次包覆,制备出AP/PDA/纳米催化剂的复合材料。主要研究内容如下:(1)AP颗粒的粒径调控。
学位
光催化技术在解决能源问题和环境污染等方面具有绿色环保、成本低廉等显著优势,而对光催化材料的研究正是这一领域的关键。三氧化钨(WO3)是一种常见的n型半导体材料,具有高的地球丰度、良好的化学稳定性、环境友好以及可见光响应等特性,在光催化领域受到了广泛关注。WO3作为光催化材料还存在光生载流子复合率高,光生电子还原能力较弱的缺点。氧化亚铜(Cu2O),禁带宽度约为2.1 e V,与WO3相比,Cu2O
学位
环境介质中残留的抗生素已被视作一种新兴的污染物,潜在地威胁着生态环境安全和人类健康。为了有效的去除水体中的抗生素,本论文以四环素(TC)为模型,通过层层自组装制备一种新型的钴(Co)、钛(Ti)共掺杂锌铁氧体(CoTiZFO)薄膜光阳极,详细地研究了薄膜层数,以及施加电压对其光电催化(PEC)降解TC的性能影响;分析了CoTiZFO薄膜光阳极在PEC作用下可能产生的活性氧物种,并探讨了TC潜在的降
学位
电能存储技术一直以来都是关系可持续发展的重要问题。电介质电容器相比于超级电容器和电池具有功率密度较大的特点,目前因为在脉冲功率器件中的应用前景而受到了广泛的研究关注。与其他介质电容器器件相比,电介质薄膜电容器体积小,击穿强度大和能量密度高,更容易集成到电路中,并且能满足自充电微能量存储的要求,有望应用于微能量存储系统中。目前对于电介质薄膜电容器的研究主要集中在提高储能密度及效率、提高耐压能力上,并
学位
场发射冷阴极材料在X射线管、高功率微波等真空微电子器件领域有着重要应用。传统的冷阴极材料存在着开启场高、发射电流密度小、发射稳定性差等问题,并不适合应用在真空微电子领域。金刚石-石墨烯复合材料因其兼具金刚石和石墨烯的优异特性而成为了一类性能优异的场发射阴极材料,因此,探究这种复合材料的生长工艺和机理对提升其场发射性能意义重大。本文采用微波等离子体化学气相沉积(MPCVD)技术,以液态含氮有机分子为
学位
通过激光惯性约束聚变(ICF)是实现可控核聚变最有希望的方式,可获得清洁高效的能源。其中薄壁聚合物空心微球是ICF物理实验不可或缺的一部分。然而,在制备过程中薄壁微球因其直径/壁厚较大将会引起其在干燥和使用中开裂率增大。因此,薄壁空心微球需要在满足传统ICF靶用微球尺寸单分散性、严苛球形度和表面光洁度等前提下,还应降低其在干燥过程中的开裂率。在本论文中,将研究聚合物原料和填料对薄壁空心微球质量的影
学位
随着核电事业的蓬勃发展,乏燃料后处理过程中产生的高放废液积累量也越来越多,而高放废液具有酸度高、锕系核素难分离等特点,如何高效分离-固化高放废液中锕系核素已成为核能可持续发展的限制条件之一。水合稀土磷酸盐Ln PO4·0.667H2O(Ln=La-Gd)具有优异的结构灵活性和化学稳定性,易在酸性溶液中制备,且通过高温煅烧可转变为独居石矿相。采用水合稀土磷酸盐富集分离-独居石陶瓷固化可安全、高效、经
学位
聚酰亚胺(Polyimide,PI)是综合性能最佳的高分子材料之一,具有优异的热和化学稳定性、高强度、高模量和电绝缘性等,被广泛应用在电气绝缘、航空航天、微电子封装、柔性显示、电致变色、电致发光等领域。近年来,随着便携式电子产品的爆发式增长以及可折叠手机等新型电子产品的问世,传统聚酰亚胺的热和尺寸稳定性、机械性能、介电性能、光学性能和导热性能等已经难以满足微电子封装、柔性显示等相关领域对聚酰亚胺越
学位
橡胶集料混凝土具有优异的抗冻、抗侵蚀和抗冲击性能以及良好的延性,应用前景十分广阔。进一步明确橡胶集料改善混凝土延性的细观机理,掌握不同因素对橡胶集料混凝土力学性能的影响规律,对橡胶集料混凝土的扩大应用有重大意义。本课题从细观尺度出发,建立了橡胶集料混凝土弹性常数预测模型,通过数值模拟研究了单轴压缩荷载、四点弯曲和拉伸断裂荷载下橡胶集料混凝土的损伤破坏过程,进一步阐明了橡胶集料、界面过渡区(ITZ)
学位