Y(PO3)3/LiYF4改性LiNi0.6Co0.1Mn0.3O2的电化学性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:liunian2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
三元层状正极材料LiNi0.6Co0.1Mn0.3O2(NCM613)由于其较高的放电比容量,具有良好的应用前景,但是由于电解液不断侵蚀材料的表面,使其循环性能较差,限制了其大规模商业化应用。为了解决这个问题,本论文采用表面包覆以及部分掺杂的方法来提高NCM613的结构稳定性,并对其电化学性能进行了研究。首先研究了Y(PO3)3改性对NCM613材料的结构和电化学性能的影响。表征结果表明,少量的钇可以掺杂进入NCM613的晶体结构中,提高锂离子在充放电过程中的传输速率,降低Li+/Ni2+混排;其余的Y(PO3)3与表面残留锂反应,一方面降低表面残余锂量,另外在NCM613晶粒上形成YPO4-Li3PO4-Y(PO3)3包覆层。采用0.3 wt%Y(PO3)3改性的NCM613样品具有最佳的电化学性能,在2.8-4.5V下,1C循环100次后25℃时容量保持率为87.2%,45℃时容量保持率为82.1%;而未改性的NCM613在相同测试条件下,容量保持率只有71.8%和65.8%。YPO4-Li3PO4-Y(PO3)3表面包覆和钇掺杂的协同作用减少正极材料和电解质之间的副反应,抑制了微裂纹的产生,进而提升了材料的循环稳定性。利用Y(NO3)3·6H2O、NH4F、LiNO3(Li、Y和F的摩尔比为1:1:4,以LiYF4计量)和三元正极材料NCM613混合,通过煅烧得到LiYF4-YOF共包覆改性的电池材料。结构表征和电化学分析表明改性后的材料仍然保持着良好的层状结构,生成的LiYF4-YOF共包覆层可以抑制电解液对正极材料的腐蚀,降低充放电过程中的阻抗,进而提升电池材料的循环性能和倍率性能。采用0.5wt%LiYF4改性的样品NCM-0.5LF具备最佳的电化学性能,在2.8-4.5 V、25℃和1 C测试条件下,经过100次循环后,NCM-0.5LF的容量保持率为90.8%,而NCM613的容量保持率只有71.8%;在2.8-4.5 V、45℃和5C下,经过100圈循环后,NCM-0.5LF容量保持率为89.4%,而未改性的NCM613容量保持率仅为52.8%。
其他文献
Co3O4作为一种经典的电极材料在超级电容器领域受到了广泛的关注,但导电率低和分散性较差的特点使其在能量密度的提升方面受到了限制。论文通过改变结构和优化制备方法制得Co3O4基电极材料Co3O4@Ni-Co LDH/NF,并应用于超级电容器。(1)利用水热法制备得到了纳米线和纳米片交错的网状结构复合电极材料Co3O4@Ni-Co LDH/NF。通过改变表面活性剂CTAB浓度调控Co3O4@Ni-C
学位
ZnCo2O4因具有高理论比电容和丰富的氧化还原活性位点而在电极材料的制备中备受关注,但其固有的低电导率和低离子扩散速率限制了材料能量密度的提升。为改进其性能,本文将锌钴双金属氧化物与过渡金属硫化物复合制备了核壳结构复合材料,并对沉积时间和电解液组成进行优化,将制得的材料用于超级电容器中以检验实际应用能力。利用水热法和循环伏安电沉积法在泡沫镍上制备了复合材料ZnCo2O4@Co Mn-S,主要研究
学位
可再生能源储存与转化技术的开发和推广是助力全球能源转型的关键。其中,电解水析氢和电化学氧还原是可再生能源储存与转化中的重要反应。因此,开发出催化活性高、稳定性好、储量丰富、价格低廉的非贵金属基催化剂是电化学能源转化中的关键。氮掺杂碳具有优异的电学特性和电化学性能,将其与过渡金属复合形成的双活性中心协同效应使其有望成为高活性、高稳定性的非贵金属基催化剂。本论文围绕氮掺杂碳负载过渡金属复合材料的制备及
学位
本论文从MOFs材料固定化酶的优势及广泛应用出发,针对游离漆酶易受外界环境影响及重复利用性差等问题,以多级孔MOF材料HcP-UiO-66-NH2(30)为固定化载体,成功制备了酶学性能优于游离漆酶的固定化漆酶Lac@HcP-UiO-66-NH2(30);同时将其应用于抗生素污染治理领域,实现盐酸林可霉素和利福平的完全降解,固定化漆酶良好的循环利用性也为漆酶在环境修复领域的实际应用提供参考。具体研
学位
本文通过采用流体体积法(Volume of Fluid,VOF)和离散元模型(Discrete Element Method,DEM)的耦合方法,湍流模型选用雷诺应力模型(RSM),对水力旋流器中的气液固三相流进行了数值模拟研究。VOF用来计算流体相含率,DEM则用来追踪离散的固体颗粒的运动状态。通过网格无关性验证选取了2+1mm的网格尺寸组合,通过局部加密溢流出口和底流出口段的网格使得数值模拟的
学位
近年来,随着人类对石油能源的需求增加以及轻质油储量的不断减少,稠油的开采迫在眉睫。然而,由于稠油中含有大量的沥青质、胶质,以及一些脂肪烃类,稠油表现出高黏度和低流动性的特征。所以,在稠油的开采过程中选用合适的降黏剂来降低稠油黏度尤为重要。随着计算机运算能力的提高和分子模拟技术的发展,分子模拟是一种在分子层面对降黏剂的结构进行设计的有效手段。从分子层面揭示降黏剂的作用机理也减少了实验的经济成本和时间
学位
非均相催化活化过一硫酸盐(PMS)产生的强氧化性硫酸根自由基(SO4·-),能够有效降解有机污染物。其中,钴基催化剂的研究较为广泛,但仍然存在一些尚待解决的问题:(1)催化剂中的Co容易浸出到水体中,造成环境污染;(2)催化剂中Co(II)/Co(III)氧化还原对的循环速率限制了催化剂的活性;(3)粉体非均相催化剂难于分离回收,残留在水体中的催化剂容易造成二次污染。针对以上问题,本论文选用晶体结
学位
球形聚结技术可以在一个单元操作中耦合结晶和造粒两个过程,可制备高性能的球形晶体产品,在制药、食品等领域的高端产品制造方面具有广阔应用前景。本文针对目前球形聚结技术机理研究不充分、过程设计复杂和产品粒度粒形控制困难等问题,提出一种晶体聚结成球的设计策略,验证了策略的有效性和普适性,并应用该策略实现高质量塞来昔布(Celecoxib,CXB)球晶产品的设计与开发。首先,本文开发了一种晶体聚结成球设计策
学位
电化学还原二氧化碳(CO2RR)制备高附加值化学品和燃料被认为是解决环境和能源问题的有效方法。然而,由于CO2RR涉及到多个质子电子转移过程和C-C耦合反应,因此选择性地将CO2还原为高能量密度的C2+产物仍具有较大的挑战。基于顺序催化机理,本研究分别制备了两种Au修饰的Cu2O催化剂(AuxCu2O、AuxCu2O-Ⅰ),通过提高*CO关键中间体的生成和停留时间,加速C-C耦合反应的进行,从而有
学位
随着世界经济的不断发展,人口的不断壮大,不可再生的化石能源即将消耗殆尽。与此同时二氧化碳和其他温室气体的大量排放可能加剧温室效应和全球气候变化。太阳能取之不尽用之不竭,因其体量大、可持续等优势被认为是最具潜力,能够替代传统化石能源的清洁能源之一。无偏压的光电化学(PEC)水分解反应是一种有望将太阳能直接转换为化学能的方法。TiO2,WO3,BiVO4,Fe2O3等金属氧化物半导体因具备大开路电压,
学位