论文部分内容阅读
高中数学本身具有的应用价值、文化价值和智力价值,确立了它在学校课程中总是占据重要地位。数学学习已成为高中学生人人面对的一项重要活动。因此,认识数学学习、数学课程的内涵及彼此的关系,显得极为重要。
第一,关于高中数学学习
(一)对数学本质的不同理解和学习实质的不同看法。这个方面给我们认识数学学习的实质增加了难度。就高中学生而言,他们所面对的数学学习内容,主要是反映现实世界的数量关系和空间形式,数学学习活动是受数学课程规范的、在学校情境中进行的,它不同于人类一般的数学学习。因此,从心理学的角度,高中学生的数学学习,是按教育目标在数学课程规定的范围内,由获得数学知识经验而引起的比较持久的行为或倾向的变化过程。这里的行为或倾向,包括学生外在的行为以及内在的数学认知、情感、兴趣、态度、动機等等。
(二)关于数学自身的特点。这决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论—实践—理论”的模式,与数学家的思维模式相比,必须经历逆转的心理过程。高中学生的数学学习,是按课程方案在教师指导下进行的数学学科的学习,数学课程的特点使学生的数学学习更具有自己的风格和特色。
(三)数学学习的类型。高中学生究竟进行什么样式的数学学习?回答这一问题,对揭示学生学习的心理规律、教师组织教学、数学课程建设等等都很有意义。分类标准不同,看法各异。如按数学学习的内容,可以分为:(1)数学知识的学习;(2)数学活动经验的学习;(3)创造性数学活动经验的学习。
上述认识表明,高中学生的数学学习是一项复杂的心理活动,它受学生个体发展水平、学校教育、数学课程等多种因素的制约。其中,数学课程不但影响着人们对数学学习实质、特点的理解,而且直接影响学生数学学习的内容、方法以及学习的成果。
第二,关于高中数学课程
高中数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。
制约数学课程建设的因素是多方面的,大致有社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的发展史因素。如果从高中数学教育的出发点与归宿来看,数学课程建设是为了学生的个性发展,这种发展不是绝对自由的,而是在满足社会需要前提下实现的。学生的个性发展源于成熟与学习。成熟多受遗传的禀赋和潜能所支配,学习则是个体从环境中所获得的变化,主要受个人的教养和境遇所影响。学校数学教育给学生提供了数学学习的环境,数学课程在这种环境中起着“中介”和“方案”作用。因此,在满足社会需要的前提下,学生数学学习的实质、特点及所经历的心理规律等等,成为影响数学课程建设因素中的最根本因素。数学课程改革,必须认真对待学生的数学学习问题。
第三,从数学学习看数学课程改革
(1)人本主义数学课程的目标是将学生的数学认知发展和情意发展(情绪、感情、态度、价值等)统一起来,数学课程采用知识课程与体验课程或情意课程与体验课程的多层结构。它以马斯洛的理论为其心理学基础,企图将抽象的数学演绎过程转变为经验的归纳的学习过程。然而,这种理想化课程并没有提高学校数学教育质量,过分强调尊重人的价值、忽视学生数学学习的规律,造成了学生学习能力低下。
数学课程必须符合学生数学学习的特点、心理规律,实际上是数学课程的学生适切性问题,它与数学课程的社会适切性共同决定着数学课程改革的成败。如何使学生在数学学习中人格得以完善,又能兼顾社会的需要,看来“大众数学”强调素质教育的思想是比较合理的。在这一思想指导下,90年代西方发达国家都建立了各自的数学课程体系,将数学课程的社会适切性与学生适切性置于核心地位,尤其是后者,可以说达到空前的地步。
(二)从数学学习看数学课程标准
高中数学课程标准规定,必须考虑学生达到该学段时已有的数学知识经验、数学认知发展水平、数学思维的发展水平与特点,以及学生在教师的指导下以上方面可达到的水平。不同民族、不同环境下成长的学生,在思维发展顺序上同一,但达到各阶段的时间有差异。从数学概括能力、空间想象能力、数学命题能力和逻辑推理能力几方面发展的研究表明,到高中二年级,已“初步定型”或成熟。数学课程标准的确定,必须考虑这些特点。
(三)从数学学习看数学课程内容的选择
数学课程内容的确定,是历次数学课程改革的核心。从数学学习的角度看,数学课程的内容必须对大多数学校的大多数学生是难易适中,应与学生的认知水平相匹配,与学生的可接受能力相适应。这些内容应该是以前数学学习的发展,是今后数学学习或就业的准备。学习这些内容,不仅使学生获得数学知识经验,而且使学生的数学学习机制(元学习)得到发展。数学课程的内容过于直观、易懂,有益于学生较快获得数学知识,但对数学经验积累较少,至于更有意义的学习机制的发展就微乎其微。高中数学课程内容,应尽可能地让学生感知数学的发展和全貌,增加广泛的背景知识,体现不同的数学思维方式和数学思想方法。这些内容是极有价值的,学生可能会受益终身。
(四)从数学学习看数学课程的体系编排
数学课程的体系编排,应以学生不同阶段的数学认知方式、认知结构、学习过程的心理特征为前提,在此基础上,尽可能保持数学科学所具有的严密和统一性,处理好“数学学问逻辑”向“学科数学逻辑”的转化,实现数学知识结构、认知结构、心理结构的和谐统一。学生数学学习的类型是多样的,课程体系的编排,某一区段的组织不妨按认知水平,从低向高,依次以概念、原理、运用、问题解决学习为序列。
当然,学生的认识不是一次性完成的,应注意课程的螺旋式发展。同时,数学课程编排中应注意学生自学能力、数学意识的培养,必须充分考虑学生非智力因素的发展,为其数学学习提供动力。
第一,关于高中数学学习
(一)对数学本质的不同理解和学习实质的不同看法。这个方面给我们认识数学学习的实质增加了难度。就高中学生而言,他们所面对的数学学习内容,主要是反映现实世界的数量关系和空间形式,数学学习活动是受数学课程规范的、在学校情境中进行的,它不同于人类一般的数学学习。因此,从心理学的角度,高中学生的数学学习,是按教育目标在数学课程规定的范围内,由获得数学知识经验而引起的比较持久的行为或倾向的变化过程。这里的行为或倾向,包括学生外在的行为以及内在的数学认知、情感、兴趣、态度、动機等等。
(二)关于数学自身的特点。这决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论—实践—理论”的模式,与数学家的思维模式相比,必须经历逆转的心理过程。高中学生的数学学习,是按课程方案在教师指导下进行的数学学科的学习,数学课程的特点使学生的数学学习更具有自己的风格和特色。
(三)数学学习的类型。高中学生究竟进行什么样式的数学学习?回答这一问题,对揭示学生学习的心理规律、教师组织教学、数学课程建设等等都很有意义。分类标准不同,看法各异。如按数学学习的内容,可以分为:(1)数学知识的学习;(2)数学活动经验的学习;(3)创造性数学活动经验的学习。
上述认识表明,高中学生的数学学习是一项复杂的心理活动,它受学生个体发展水平、学校教育、数学课程等多种因素的制约。其中,数学课程不但影响着人们对数学学习实质、特点的理解,而且直接影响学生数学学习的内容、方法以及学习的成果。
第二,关于高中数学课程
高中数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。
制约数学课程建设的因素是多方面的,大致有社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的发展史因素。如果从高中数学教育的出发点与归宿来看,数学课程建设是为了学生的个性发展,这种发展不是绝对自由的,而是在满足社会需要前提下实现的。学生的个性发展源于成熟与学习。成熟多受遗传的禀赋和潜能所支配,学习则是个体从环境中所获得的变化,主要受个人的教养和境遇所影响。学校数学教育给学生提供了数学学习的环境,数学课程在这种环境中起着“中介”和“方案”作用。因此,在满足社会需要的前提下,学生数学学习的实质、特点及所经历的心理规律等等,成为影响数学课程建设因素中的最根本因素。数学课程改革,必须认真对待学生的数学学习问题。
第三,从数学学习看数学课程改革
(1)人本主义数学课程的目标是将学生的数学认知发展和情意发展(情绪、感情、态度、价值等)统一起来,数学课程采用知识课程与体验课程或情意课程与体验课程的多层结构。它以马斯洛的理论为其心理学基础,企图将抽象的数学演绎过程转变为经验的归纳的学习过程。然而,这种理想化课程并没有提高学校数学教育质量,过分强调尊重人的价值、忽视学生数学学习的规律,造成了学生学习能力低下。
数学课程必须符合学生数学学习的特点、心理规律,实际上是数学课程的学生适切性问题,它与数学课程的社会适切性共同决定着数学课程改革的成败。如何使学生在数学学习中人格得以完善,又能兼顾社会的需要,看来“大众数学”强调素质教育的思想是比较合理的。在这一思想指导下,90年代西方发达国家都建立了各自的数学课程体系,将数学课程的社会适切性与学生适切性置于核心地位,尤其是后者,可以说达到空前的地步。
(二)从数学学习看数学课程标准
高中数学课程标准规定,必须考虑学生达到该学段时已有的数学知识经验、数学认知发展水平、数学思维的发展水平与特点,以及学生在教师的指导下以上方面可达到的水平。不同民族、不同环境下成长的学生,在思维发展顺序上同一,但达到各阶段的时间有差异。从数学概括能力、空间想象能力、数学命题能力和逻辑推理能力几方面发展的研究表明,到高中二年级,已“初步定型”或成熟。数学课程标准的确定,必须考虑这些特点。
(三)从数学学习看数学课程内容的选择
数学课程内容的确定,是历次数学课程改革的核心。从数学学习的角度看,数学课程的内容必须对大多数学校的大多数学生是难易适中,应与学生的认知水平相匹配,与学生的可接受能力相适应。这些内容应该是以前数学学习的发展,是今后数学学习或就业的准备。学习这些内容,不仅使学生获得数学知识经验,而且使学生的数学学习机制(元学习)得到发展。数学课程的内容过于直观、易懂,有益于学生较快获得数学知识,但对数学经验积累较少,至于更有意义的学习机制的发展就微乎其微。高中数学课程内容,应尽可能地让学生感知数学的发展和全貌,增加广泛的背景知识,体现不同的数学思维方式和数学思想方法。这些内容是极有价值的,学生可能会受益终身。
(四)从数学学习看数学课程的体系编排
数学课程的体系编排,应以学生不同阶段的数学认知方式、认知结构、学习过程的心理特征为前提,在此基础上,尽可能保持数学科学所具有的严密和统一性,处理好“数学学问逻辑”向“学科数学逻辑”的转化,实现数学知识结构、认知结构、心理结构的和谐统一。学生数学学习的类型是多样的,课程体系的编排,某一区段的组织不妨按认知水平,从低向高,依次以概念、原理、运用、问题解决学习为序列。
当然,学生的认识不是一次性完成的,应注意课程的螺旋式发展。同时,数学课程编排中应注意学生自学能力、数学意识的培养,必须充分考虑学生非智力因素的发展,为其数学学习提供动力。